- \bullet N denotes the set of positive integers.
- $\bullet \mathbb{Z}$ denotes the set of integers.
- \bullet $\mathbb R$ denotes the set of real numbers.
- ullet C denotes the set of complex numbers.
- **Q1.** Find the values of a > 0 for which the improper integral

$$\int_0^\infty \frac{\sin x}{x^a} \ dx$$

converges.

Q2. Let $f:[0,1] \to \mathbb{R}$ be a real-valued continuous function which is differentiable on (0,1) and satisfies f(0)=0. Suppose there exists a constant $c \in (0,1)$ such that

$$|f'(x)| \le c|f(x)|$$
 for all $x \in (0,1)$.

Show that f(x) = 0 for all $x \in [0, 1]$.

- **Q3.** Let G be an abelian group of order n.
 - (a) If $f: G \to \mathbb{C}$ is a function, then prove that for all $h \in G$,

$$\sum_{g \in G} f(g) = \sum_{g \in G} f(hg).$$

(b) Let \mathbb{C}^* be the multiplicative group of non-zero complex numbers and suppose $f:G\to\mathbb{C}^*$ is a homomorphism. Prove that

$$\sum_{g \in G} f(g) = 0 \quad \text{or} \quad \sum_{g \in G} f(g) = n.$$

(c) If $f: G \to \mathbb{C}^*$ is any homomorphism, then prove that

$$\sum_{g \in G} |f(g)| = n.$$

- **Q4.** (a) Is the ideal I = (X + Y, X Y) in the polynomial ring $\mathbb{C}[X, Y]$ a prime ideal? Justify your answer.
 - (b) Is the ideal I = (X + Y, X Y) in the polynomial ring $\mathbb{Z}[X, Y]$ a prime ideal? Justify your answer.

Q5. Let $n \geq 2$ and A be an $n \times n$ matrix with real entries. Let $\operatorname{Adj} A$ denote the adjoint of A, that is, the (i, j)-th entry of $\operatorname{Adj} A$ is the (j, i)-th cofactor of A.

Show that the rank of Adj A is 0, 1 or n.

Q6. Suppose an urn contains a red ball and a blue ball. A ball is drawn at random and a ball of the same colour is added to the urn along with the one that was drawn. This process is repeated indefinitely.

Let X denote the random variable that takes the value n if the first n-1 draws yield red balls and the n-th draw yields a blue ball.

- (a) If $n \ge 1$, find P(X > n).
- (b) Show that the probability of a blue ball being chosen eventually is 1.
- (c) Find E[X].
- **Q7.** A real number x_0 is said to be a limit point of a set $S \subseteq \mathbb{R}$ if every neighbourhood of x_0 contains a point of S other than x_0 . Consider the set

$$S = \{0\} \cup \left\{ \frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N} \right\}.$$

- (a) Show that S contains infinitely many limit points of S.
- (b) Show that S is a compact subset of \mathbb{R} .
- (c) Find all limit points of S.
- **Q8.** (a) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous functions on [0,1] such that $\sum_{n=1}^{\infty} f_n$ converges uniformly on (0,1]. Show that $\sum_{n=1}^{\infty} f_n(0)$ converges.
 - (b) Find the set D of all points $x \in [0,1]$ such that the series

2

$$\sum_{n=1}^{\infty} e^{-nx} \cos nx$$

converges. Does this series converge uniformly on D? Justify your answer.