Entrance Examination for CMI BSc (Mathematics \& Computer Science) May 2011

Attempt all problems from parts A and C. Attempt any 7 problems from part B.
Part A. Choose the correct option and explain your reasoning briefly. Each problem is worth 3 points.

1. The word MATHEMATICS consists of 11 letters. The number of distinct ways to rearrange these letters is
(A) 11 !
(B) $\frac{11!}{3}$
(C) $\frac{11!}{6}$
(D) $\frac{11!}{8}$
2. In a rectangle $A B C D$, the length $B C$ is twice the width $A B$. Pick a point P on side $B C$ such that the lengths of AP and BC are equal. The measure of angle CPD is
(A) 75°
(B) 60°
(C) 45°
(D) none of the above
3. The number of θ with $0 \leq \theta<2 \pi$ such that $4 \sin (3 \theta+2)=1$ is
(A) 2
(B) 3
(C) 6
(D) none of the above
4. Given positive real numbers $a_{1}, a_{2}, \ldots, a_{2011}$ whose product $a_{1} a_{2} \cdots a_{2011}$ is 1 , what can you say about their sum $S=a_{1}+a_{2}+\cdots+a_{2011}$?
(A) S can be any positive number.
(B) $1 \leq S \leq 2011$.
(C) $2011 \leq S$ and S is unbounded above.
(D) $2011 \leq S$ and S is bounded above.
5. A function f is defined by $f(x)=e^{x}$ if $x<1$ and $f(x)=\log _{e}(x)+a x^{2}+b x$ if $x \geq 1$. Here a and b are unknown real numbers. Can f be differentiable at $x=1$?
(A) f is not differentiable at $x=1$ for any a and b.
(B) There exist unique numbers a and b for which f is differentiable at $x=1$.
(C) f is differentiable at $x=1$ whenever $a+b=e$.
(D) f is differentiable at $x=1$ regardless of the values of a and b.
6. The equation $x^{2}+b x+c=0$ has nonzero real coefficients satisfying $b^{2}>4 c$. Moreover, exactly one of b and c is irrational. Consider the solutions p and q of this equation.
(A) Both p and q must be rational.
(B) Both p and q must be irrational.
(C) One of p and q is rational and the other irrational.
(D) We cannot conclude anything about rationality of p and q unless we know b and c.
7. When does the polynomial $1+x+\cdots+x^{n}$ have $x-a$ as a factor? Here n is a positive integer greater than 1000 and a is a real number.
(A) if and only if $a=-1$
(B) if and only if $a=-1$ and n is odd
(C) if and only if $a=-1$ and n is even
(D) We cannot decide unless n is known.

Part B. Attempt any 7 problems. Explain your reasoning. Each problem is worth 7 points.

1. In a business meeting, each person shakes hands with each other person, with the exception of Mr. L. Since Mr. L arrives after some people have left, he shakes hands only with those present. If the total number of handshakes is exactly 100 , how many people left the meeting before Mr. L arrived? (Nobody shakes hands with the same person more than once.)
2. Show that the power of x with the largest coefficient in the polynomial $\left(1+\frac{2 x}{3}\right)^{20}$ is 8 , i.e., if we write the given polynomial as $\sum_{i} a_{i} x^{i}$ then the largest coefficient a_{i} is a_{8}.
3. Show that there are infinitely many perfect squares that can be written as a sum of six consecutive natural numbers. Find the smallest such square.
4. Let S be the set of all 5 -digit numbers that contain the digits $1,3,5,7$ and 9 exactly once (in usual base 10 representation). Show that the sum of all elements of S is divisible by 11111. Find this sum.
5. It is given that the complex number $i-3$ is a root of the polynomial $3 x^{4}+10 x^{3}+$ $A x^{2}+B x-30$, where A and B are unknown real numbers. Find the other roots.
6. Show that there is no solid figure with exactly 11 faces such that each face is a polygon having an odd number of sides.
7. To find the volume of a cave, we fit X, Y and Z axes such that the base of the cave is in the XY-plane and the vertical direction is parallel to the Z-axis. The base is the region in the XY-plane bounded by the parabola $y^{2}=1-x$ and the Y-axis. Each cross-section of the cave perpendicular to the X -axis is a square.
(a) Show how to write a definite integral that will calculate the volume of this cave.
(b) Evaluate this definite integral. Is it possible to evaluate it without using a formula for indefinite integrals?
8. $f(x)=x^{3}+x^{2}+c x+d$, where c and d are real numbers. Prove that if $c>\frac{1}{3}$, then f has exactly one real root.
9. A real-valued function f defined on a closed interval $[a, b]$ has the properties that $f(a)=f(b)=0$ and $f(x)=f^{\prime}(x)+f^{\prime \prime}(x)$ for all x in $[a, b]$. Show that $f(x)=0$ for all x in $[a, b]$.

Part C. Explain your reasoning. Each problem is worth 10 points.

1. Show that there are exactly 16 pairs of integers (x, y) such that $11 x+8 y+17=x y$. You need not list the solutions.
2. A function g from a set X to itself satisfies $g^{m}=g^{n}$ for positive integers m and n with $m>n$. Here g^{n} stands for $g \circ g \circ \cdots \circ g$ (n times). Show that g is one-to-one if and only if g is onto. (Some of you may have seen the term "one-one function" instead of "one-to-one function". Both mean the same.)
3. In a quadrilateral $A B C D$, angles at vertices B and D are right angles. $A M$ and $C N$ are respectively altitudes of the triangles ABD and CBD . See the figure below. Show that BN $=\mathrm{DM}$.

In this figure the angles $\mathrm{ABC}, \mathrm{ADC}, \mathrm{AMD}$ and CNB are right angles.

