
Solutions to 2016 Entrance Examination for BSc Programmes at CMI

Answers to Part A

1. If K comes second, then L was third (one correct answer for R). But then R would also
need to be second (one correct answer for M), a contradiction. So K cannot be second.
So M must have won, etc. The order is M R L K.

2. Per-capita GDP is GDP
population

. Letting G and P denote the old GDP and population

respectively, the new per-capita GDP is 1.078G
(1+x)P

where x is the unknown percent change

in population we wish to calculate. The percent increase in per-capita GDP is 10% = 0.1.
So we have 1.078

1+x
= 1.1. Solving for x we get 1+x = 1.078

1.1
= 98×11

100×11
= 0.98. So x is −0.02.

So population decreased by 2%.

3. Given n = pq = 110179. The number of integers relatively prime to n and smaller than
n is (p− 1)(q − 1). So we have pq − p− q + 1 = 109480. We get p + q = 700. Now p, q
are solutions to the quadratic x2 − 700x+ 110179. The discriminant of this quadratic is√
490000− 440716 =

√
49284 = 22. So we get p = 700+222

2
= 461 and q = 700−222

2
= 239.

4. Let there be a steps to the right (east), b steps north-west and c steps southwest. The
total number of steps is a+b+c. The key idea is to think of the northwest step as a move
in the complex plane along ω, the complex cube root of unity, the southwest step as a
move in the complex plane along ω2 and the step to the right as a move along ω3 = 1.
From the hypothesis we then have a + bω + cω2 = 1. Using 1 + ω + ω2 = 0 we see that
a− 1 = b = c. This then rules out a + b + c = 6, so the number of 6 step paths is zero.
A 7 step path is possible only with a = 3, b = 2, c = 2. The number of such paths is the
multinomial coefficient

(

7
3,2,2

)

= 210. (Instead of complex numbers one can also think in

terms of vector addition in the plane.)

5. Let θ = π
101

. Let A = cos2(θ) + cos2(2θ) + · · ·+ cos2(100θ). Let B = sin2(θ) + sin2(2θ) +
· · ·+sin2(100θ). We have A+B = 100, and A−B = cos(2θ)+ cos(4θ)+ · · ·+cos(200θ).

Since θ = π
101

, we see that cos(2θ) = cos( 2π
101

) is the real part of e
2πi

101 , i being the complex
square root of −1. Interpreting the other terms in A−B similarly we see that A−B is
the real part of the sum of the 101th roots of unity except 1. So A−B = −1. This gives
A = 99

2
, B = 101

2
.

6. The given function is defined using the two functions x2 + 1 and tan(x). Both these
functions are continuous wherever they are defined. Since every irrational number z has
a non terminating, non repeating decimal expansion we see that given any ǫ > 0 there is
a rational number p such that the distance between z and p is less than ǫ. Using these
facts one can see that the given function will be continuous precisely at those x in the
interval [0, 4π] where x2 + 1 = tan(x). Since x2 + 1 is positive, it will intersect tan(x)
exactly once in the intervals [0, π

2
], [π, 3π

2
], [2π, 5π

2
], [3π, 7π

2
], as tan(x) increases from 0 to

∞ in each of these intervals. tan(x) is negative elsewhere in the given domain. So we
have 4 points of continuity.
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7. TTFF

Since the set S is nonempty, there is an element m ∈ S. But then m = m + 0 and
so 0 ∈ S. 1 cannot be in S, otherwise it will contain all non-negative integers. It is
not difficult to see by the division algorithm that if m,n are in S then so is their GCD.
Therefore two coprime numbers cannot be in S. Otherwise their GCD, which is 1, will be
in S, a contradiction. It follows that such sets S are precisely those of the form nZ≥0, the
set of all non-negative multiples of a fixed non-negative integer n. So there are infinitely
many such possible sets.

8. TTFF

If g(x) is linear, it is 3x + 5 because the values at 1 and 2 are 8 and 11 respectively. If
g(x) is a polynomial then it is 3x+5 plus a multiple of (x−1)(x−2) · · · (x−15). So g(x)
cannot be a polynomial of degree 10. But it can be a polynomial of degree 15 or more.
g being differentiable does not mean that it is a polynomial. You can fit any number of
differentiable functions to the given data.

9. TFFT

i The mean value theorem tells us S ⊂ T .

ii T ⊂ S is false, example f(x) = sin(x). Here f ′(0) = 1 is in T but not in S.

iii T = S = R can happen at points where f is not differentiable.

iv S has mean value property, because of continuity. (Why?)

10. TFFT

BP and CP are angle bisectors meeting at P , so AP bisects ∠A since the angle bisectors
are concurrent. The angles marked with symbol ◦ at point P are all 60◦ because ∠EPD =
twice this common value. It follows that half the sum of ∠B and ∠C is 60◦. So ∠A is
60◦. The others are false, in fact check that any triangle with ∠A = 60◦, angle bisectors
BD and CE, their point of intersection P and PF bisecting ∠BPC will satisfy the given
data. All four statements are true if and only if the triangle ABC is equilateral.

Solutions to Part B.

1. Out of the 14 students taking a test, 5 are well prepared, 6 are adequately prepared and
3 are poorly prepared. There are 10 questions on the test paper. A well prepared student
can answer 9 questions correctly, an adequately prepared student can answer 6 questions
correctly and a poorly prepared student can answer only 3 questions correctly.

For each probability below, write your final answer as a rational number in lowest form.

(a) If a randomly chosen student is asked two distinct randomly chosen questions from
the test, what is the probability that the student will answer both questions correctly?
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Note: The student and the questions are chosen independently of each other. “Random”
means that each individual student/each pair of questions is equally likely to be chosen.

(b) Now suppose that a student was chosen at random and asked two randomly chosen
questions from the exam, and moreover did answer both questions correctly. Find the
probability that the chosen student was well prepared.

Solution. (a) The probability that a randomly chosen student is well prepared is 5/14.
The probability of a well prepared student answering two randomly chosen questions
correctly is

(

9
2

)

/
(

10
2

)

. So the probability that a randomly chosen student is well prepared

AND answers two randomly chosen questions correctly is 5
14
× (9

2
)

(10
2
)
= 2

7
. A student belongs

to exactly one of the three preparedness categories, so the desired probability is obtained
by adding 2

7
with the results of parallel calculations for the other two categories. We get

P (both answers correct) =

P (well prepared)

(

9
2

)

(

10
2

) + P (moderately prepared)

(

6
2

)

(

10
2

) + P (weakly prepared)

(

3
2

)

(

10
2

) ,

which equals
5

14
× 36

45
+

6

14
× 15

45
+

3

14
× 3

45
=

31

70
.

(b) The probability that a randomly chosen student was well prepared given that he
answered both questions correctly is

P (well prepared|both correct) =
P (well prepared and both correct)

P (both correct)
=

2/7

31/70
=

20

31
.

2. By definition the region inside the parabola y = x2 is the set of points (a, b) such that
b ≥ a2. We are interested in those circles all of whose points are in this region. A bubble

at a point P on the graph of y = x2 is the largest such circle that contains P . (You may
assume the fact that there is a unique such circle at any given point on the parabola.)

(a) A bubble at some point on the parabola has radius 1. Find the center of this bubble.

(b) Find the radius of the smallest possible bubble at some point on the parabola. Justify.

Solution. A bubble at the point P = (a, a2) must be tangential to the parabola at
(a, a2). (Why?) It must also be symmetric with respect to Y-axis (why?) and so its
center O must be on the Y-axis. The radius OP of this bubble is perpendicular to the
common tangent to the parabola and to the bubble at P . The slope of this tangent =
2a, so the slope of radius OP = −1

2a
(for a 6= 0). Let Q = (0, a2). Using triangle OPQ,

slope of OP = −OQ

a
= −1

2a
. Therefore OQ = 1

2
, regardless of the value of a.

(a) By Pythagoras, OP 2 = (1
2
)2 + a2 = 1. So a2 = 3

4
and P = (0, 3

4
+ 1

2
) = (0, 5

4
).
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(b) For any nonzero a, the radius of the bubble satisfies OP 2 = (1
2
)2 + a2, so OP > 1

2
.

The smallest bubble is at the origin and its radius is 1
2
. (One cannot just directly take

a = 0 in the above calculations. Argue by continuity or do a separate calculation at the
origin.)

3. Consider the function f(x) = xcos(x)+sin(x) defined for x ≥ 0.

(a) Prove that

0.4 ≤
∫ 1

0

f(x)dx ≤ 0.5.

Solution. It is easy to see that for 0 ≤ x ≤ 1, we have 1 ≤ cos(x)+ sin(x) ≤
√
2, and so

x1 ≥ xcos(x)+sin(x) ≥ x
√
2.

As all three functions are non-negative in [0,1], we can integrate the inequalities over
that interval to get

1

2
≥
∫ 1

0

f(x)dx ≥ 1√
2 + 1

>
1

1.5 + 1
= 0.4.

(b) Suppose the graph of f(x) is being traced on a computer screen with the uniform
speed of 1 cm per second (i.e., this is how fast the length of the curve is increasing). Show
that at the moment the point corresponding to x = 1 is being drawn, the x coordinate
is increasing at the rate of

1
√

2 + sin(2)
cm per second.

Solution. Length of the curve from x = 0 to any given x is l(x) =
∫ x

0

√

1 + f ′(u)2du.
It is given that dl

dt
= 1 cm/second at all times. One needs to find dx

dt
when x = 1.

By chain rule dl
dt
= dl

dx
dx
dt
. By the fundamental theorem of calculus dl

dx
=
√

1 + f ′(x)2. We
calculate f ′(1) = cos(1) + sin(1). (Use f(x) = xcos(x)+sin(x) = elnx(cos(x)+sin(x)), etc.) So at
x = 1, dl

dx
=
√

1 + (cos(1) + sin(1))2 =
√
2 + sin 2. Chain rule gives the answer.

(Remark: We are using calculus to analyze what in reality is a discrete situation, as a
computer will draw pixel by pixel. So the whole description is an approximation. It is
also probably more realistic to assume dx

dt
to be constant.)

4. Let A be a non-empty finite sequence of n distinct integers a1 < a2 < · · · < an. Define

A+ A = {ai + aj|1 ≤ i, j ≤ n},
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i.e., the set of all pairwise sums of numbers from A. E.g., for A = {1, 4}, A+A = {2, 5, 8}.

(a) Show that |A+A| ≥ 2n− 1. Here |A+A| means the number of elements in A+A.

(b) Prove that |A+A| = 2n−1 if and only if the sequence A is an arithmetic progression.

(c) Find a sequence A of the form 0 < 1 < a3 < · · · < a10 such that |A+ A| = 20.

Solution. (a) Easy induction, see answer to (b). Or explicitly, one has the 2n−1 distinct
numbers a1 + a1 < a1 + a2 < · · · < a1 + an < a2 + an < . . . < an + an in A+ A. (A way
to visualize is to write ai + aj at point (i, j) in the XY-plane. Any step to the right or
up increases the number. To reach from 2a1 to 2an needs 2n − 1 such steps. The given
example is the path along bottom row and then rightmost column.)

(b) Suppose the ai form an arithmetic progression. Then for a fixed k, the value of
ai+ ak−i is constant for all possible i, where 2 ≤ k ≤ 2n. For the converse use induction.
There is nothing to prove for n = 1, 2. For n > 2, remove an from A to get a set B. Now
|A + A| − |B + B| ≥ 2, because the two distinct numbers an−1 + an and 2an in A + A
are greater than all numbers in B + B. So for |A + A| = 2n − 1 to happen, one must
have |B + B| = 2n − 3, which by induction forces a1, . . . , an−1 to be in an arithmetic
progression. Moreover an−2+an must be in B+B and it can only be the largest number
2an−1 (because all others are smaller than an−2 + an). This shows that an is the next
term of the same arithmetic progression.

(c) 0,1,2,3,4,5,6,7,8,10. This answer is unique. (Why?)

5. Find a polynomial p(x) that simultaneously has both the following properties.

(i) When p(x) is divided by x100 the remainder is the constant polynomial 1.

(ii) When p(x) is divided by (x− 2)3 the remainder is the constant polynomial 2.

Solution. Suppose a polynomial f(x) leaves a constant remainder r when divided by
the polynomial (x − c)k. Then f ′(x) is divisible by (x − c)k−1. The converse is also
true: suppose for a polynomial f(x), the derivative f ′(x) is divisible by (x − c)k−1, say
f ′(x) = q(x)(x− c)k−1. Then f(x) leaves a constant remainder when divided by (x− c)k.
One can see this e.g. by substituting u = (x− c) in q(x)(x− c)k−1 and integrating.

In the given problem p′(x) must be divisible by x99 as well as by (x− 2)2. Moreover any
polynomial whose derivative is divisible by x99(x − 2)2 will leave constant remainders
when divided by either of x100 and (x − 2)3. The simplest way to find one such p(x) is
to integrate Ax99(x− 2)2 = A(x101 − 4x100 + 4x99) to get

p(x) = A

(

x102

102
− 4x101

101
+

4x100

100

)

+B

and solve for constants A and B to ensure desired values of the constant remainders. We
have p(0) = B = 1 and p(2) = A

(

2102

102
− 4×2101

101
+ 4×2100

100

)

+ 1 = 2, which gives A.
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Theoretical approach. Working through the following reasoning will be very useful
for your understanding of basic arithmetic/algebra. It explains how to implememt the
Chinese remainder theorem using the Euclidean algorithm for finding GCD. This theorem
states the following. One can always find an integer that leaves desired remainders when

divided by two coprime integers a and b.

Suppose we are required to find an integer that leaves remainder r when divided by
a and remainder s when divided by b. A way to achieve this systematically is to use
the Euclidean algorithm, which finds GCD of two numbers by repeated division with
remainder. This algorithm also enables one to write the GCD in the form xa+yb, where
the integers x, y can be found explicitly by backward substitution in the steps used to
calculate the GCD. If a and b are coprime, i.e. if their GCD is 1, then we can write
1 = xa + yb. This tells you that xa is 1 modulo b and yb is 1 modulo a. Therefore,
sxa+ ryb is r modulo a and s modulo b.

The relevance for this problem is that the same reasoning applies for polynomials in one
variable, because in this setting too one has division with remainder. Because x100 and
(x − 2)3 do not share a common factor, you know without any work that a polynomial
with given properties must exist. The same algorithm as the previous paragraph (but
now with polynomials) gives a systematic way to find it. In the given problem we could
use a different trick because the specified remainders here were rather simple (constants).
But there is a conceptual way as well by implementing the Chinese remainder theorem.

6. Find all pairs (p, n) of positive integers where p is a prime number and p3 − p = n7 − n3.

Solution. The given equation is p(p − 1)(p + 1) = n3(n2 + 1)(n + 1)(n − 1). As the
factor p on the LHS is a prime, it must divide one of the factors n− 1, n, n+1, n2 +1 on
the RHS.

A key point to deduce is that p > n2. One way to do this is as follows. The LHS
= p3 − p is an increasing function of p for p ≥ 1, e.g. because the derivative 3p2 − 1
is positive. So for any given n ≥ 1, there is exactly one real value of p for which
LHS = RHS. Trying p = n2 gives LHS = n6 − n2 < n7 − n3 = RHS, e.g. because
n7 − n3 − (n6 − n2) = (n6 − n2)(n− 1) > 0.

As the prime p is greater than n2, it cannot divide any of n−1, n, n+1. So p must divide
n2 + 1 and therefore we must have p = n2 + 1, again because p > n2. Substituting this
in the given equation, we get (n2 + 1)n2(n2 + 2) = n3(n2 + 1)(n + 1)(n− 1). Canceling
common factors gives n2 + 2 = n3 − n, i.e. 2 = n3 − n2 − n. This has a unique integer
solution n = 2, e.g. because the factor n on the RHS must divide 2 and now one checks
that n = 2 works. So n = 2 and the prime p = n2 + 1 = 5 give a unique solution to the
given equation.

6


