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✽ Problem 1

(IMO, 1989) A permutation x1x2 . . . x2n of the set {1, 2, . . . , 2n}, where n ∈ N, is
said to have property P if |xi − xi+1| = n for at least one i in {1, 2, . . . , 2n − 1}.
Show that, for each n, there are more permutations with property P than without.

Solution: The case when n = 1 is trivial. Assume that n ≥ 2. Let A (resp., B )
be the set of permutations of S = {1, 2, . . . , 2n} without property P (resp., with
P ). To show that |B| > |A|, by (IP) and (BP), it suffices to establish a mapping
f : A → B which is injective but not surjective.

For convenience, any number in the pair {k, n + k}(k = 1, 2, . . . , n) is called the
partner of the other. If k and n+k are adjacent in a permutation, the pair {k, n+k}
is called an adjacent pair of partners.

Let α = x1x2 . . . x2n be an element in A. Since α does not have property P , the
partner of x1 is xr where 3 ≤ r ≤ 2n. Now we put

f(α) = x2x3 . . . xr−1x1xrxr+1 . . . x2n

by taking x1 away and placing it just in front of its partner xr. In f(α), it is clear
that {x1, xr} is the only adjacent pair of partners. Obviously, f(α) ∈ B and f
defines a mapping from A to B. We now claim that f is injective. Let

α = x1x2 . . . x2n
β = y1y2 . . . y2n

be elements of A in which x1 ’s partner is xr and y1 ’s partner is ys, where
3 ≤ r, s ≤ 2n. Suppose f(α) = f(β); i.e.,

x2x3 . . . xr−1x1xr . . . x2n = y2y3 . . . ys−1y1ys . . . y2n.

Since {x1, xr} (resp., {y1, ys} ) is the only adjacent pair of partners in f(α) (resp.,
f(β) ), we must have r = s, x1 = y1 and xr = ys. These, in turn, imply that xi = yi
for all i = 1, 2, . . . , 2n and so α = β, showing that f is injective.

Finally, we note that f(A) consists of all permutations of S having exactly one
adjacent pair of partners while there are permutations of S in B which contain
more than one adjacent pair of partners. Thus we have f(A) ⊂ B, showing that f
is not surjective. The proof is thus complete. ■
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✽ Problem 2

Let A and E be opposite vertices of a regular octagon (Figure 5.3). A frog starts
jumping at vertex A. From any vertex of the octagon except E, it may jump to
either of the two adjacent vertices. When it reaches vertex E, the frog stops and
stays there. Let un be the number of distinct paths of exactly n jumps ending at
E. Prove that u2n−1 = 0,

u2n =
1√
2

(
xn−1 − yn−1

)
, n = 1, 2, 3, . . . ,

where x = 2 +
√
2 and y = 2−

√
2. (Note that a path of n jumps is a sequence of

vertices (P0, . . . , Pn) such that
(i) P0 = A,Pn = E;
(ii) for every i, 0 ≤ i ≤ n− 1, Pi is distinct from E; and
(iii) for every i, 0 ≤ i ≤ n− 1, Pi and Pi+1 are adjacent.)

A

B

C

D E

F

G

H

Solution: Let an, bn, cn, dn, en, fn, gn, and hn be the number of distinct paths of
exactly n jumps ending at A,B,C,D,E, F,G, and H, respectively. Then en = un.
By symmetry, we know that bn = hn, cn = gn, and dn = fn. It is also not difficult
to see that

en = dn−1 + fn−1 = 2dn−1

dn = cn−1

an = 2bn−1

cn = bn−1 + dn−1

bn = an−1 + cn−1

From the first two equations, we obtain dn−1 = 1
2en and cn−1 = dn = 1

2en+1.

Substituting these two relations into the fourth equation gives bn−1 =
1
2 (en+2 − en).
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From the third equation, we obtain an = en+2 − en. Then the fifth equation reads

en+3 − 4en+1 + 2en−1 = 0.

Thus we may consider the characteristic equation

x4 − 4x2 + 2 = 0

The four roots are ±
√

2±
√
2.

un = en = asn + b(−s)n + ctn + d(−t)n where s =
√
x =

√
2 +

√
2 and t =

√
y =√

2−
√
2. Note that e1 = e2 = e3 = 0 and e4 = 2. Hence

(a− b)s+ (c− d)t = 0

(a+ b)s2 + (c+ d)t2 = 0

(a− b)s3 + (c− d)t3 = 0

(a+ b)s4 + (c+ d)t4 = 2

From the first and third equations, we obtain a = b and c = d. This implies that
u2n−1 = 0. Solving the second and fourth equations gives

a = b =
t2

4
√
2

and c = d = − s2

4
√
2
.

Consequently, u2n = 2as2n + 2ct2n =
s2t2

2
√
2
(s2n−2 − t2n−2) =

1√
2
(xn−1 − yn−1). ■

✽ Problem 3

For a set A, let s(A) denote the sum of the elements of A. (If A = ∅, then
|A| = s(A) = 0.) Let

S = {1, 2, . . . , 1999}.
For r = 0, 1, 2, . . . , 6, define

Tr = {T | T ⊆ S, s(T ) ≡ r (mod7)}

For each r, find the number of elements in Tr.

Solution: If an integer i, 1 ≤ i ≤ 1999, is in T , it contributes i in the sum s(T );
otherwise, it contributes 0 . Hence for each number i, we associate it with the
generating function x0 + xi = 1 + xi. Consider the polynomial

f(x) = (1 + x)
(
1 + x2

)
· · ·
(
1 + x1999

)
=
∑
n

cnx
n
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Then there is a bijection between each subset T = {a1, a2, . . . , am} of S and each
term xa1xa2 · · ·xam = xa1+a2+···+am. Hence

|Tr| =
∑
k

[
x7k+r

]
f(x) =

∑
k

c7k+r.

Let ξ = e
2π
7 i, where i2 = −1, be a 7th root of unity. Then ξ7 = 1 and ξ ̸= 1, so ξ is

a root of
x7 − 1

x− 1
= 1 + x+ x2 + · · ·x6

That is, 1+ξ+ξ2+· · ·+ξ6 = 0. For r divisible by 7 , we have
∑6

k=1 ξ
kr =

∑6
k=1 1 = 6.

For r not divisible by 7 ,

{1, 2, . . . , 6} ≡ {r · 1, r · 2, · · · , r · 6} (mod7)

(In other words, a complete set of residue classes modulo 7 remains invariant by
multiplying r by each number in the set.) Thus,

6∑
k=1

ξkr =

{
6, r is divisible by 7,

−1, r is not divisible by 7.

Hence,
6∑

i=0

f
(
ξi
)
=

6∑
i=0

∑
n

cnξ
ni =

∑
n

cn

6∑
i=0

ξni =
∑
7|n

7cn = 7 |T0|

In exactly the same way, we can show that

|Tr| =
1

7

6∑
i=0

ξ−rif
(
ξi
)
=

1

7

(
21999 +

6∑
i=1

ξ−rif
(
ξi
))

since f
(
ξ0
)
= f(1) = 21999. Note also that ξ, ξ2, . . . , ξ7 = 1 are the roots of

g(x) = x7 − 1, that is,

g(x) = x7 − 1 = (x− ξ)
(
x− ξ2

)
· · ·
(
x− ξ7

)
It follows that

g(−1) = −2 = (−1− ξ)
(
−1− ξ2

) (
−1− ξ3

)
· · ·
(
−1− ξ7

)
implying that

(1 + ξ)
(
1 + ξ2

)
· · ·
(
1 + ξ7

)
= 2
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Consequently, because 1999 = 7 · 285 + 4, we have

f(ξ) = (1 + ξ)
(
1 + ξ2

)
· · ·
(
1 + ξ1999

)
=
[
(1 + ξ)

(
1 + ξ2

)
· · ·
(
1 + ξ7

)]285
(1 + ξ)

(
1 + ξ2

) (
1 + ξ3

) (
1 + ξ4

)
= 2285 ·

[
(1 + ξ)

(
1 + ξ2

) (
1 + ξ4

)] (
1 + ξ3

)
= 2285 ·

(
1 + ξ + ξ2 + · · ·+ ξ7

) (
1 + ξ3

)
= 2285

(
1 + ξ3

)
In general, we have f

(
ξi
)
= 2285

(
1 + ξ3i

)
for 1 ≤ i ≤ 6. It follows that

|Tr| =
1

7

(
21999 + 2285

6∑
i=1

ξ−ri
(
1 + ξ3i

))

=
1

7

(
21999 + 2285

6∑
i=1

[
ξ−ri + ξ(3−r)2

])

By equation (**), we conclude that

6∑
i=1

[
ξ−ri + ξ(3−r)i

]
=

{
6− 1 = 5, r ≡ 0 or 3 (mod7)

−1− 1 = −2, otherwise.

Therefore, the answer to the problem is

|Tr| =

{
21999+5·2285

7 r = 0 or 3,
21999−2286

7 r = 1, 2, 4, 5, 6.
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