B. Stat (Hons.) \& B.Math (Hons.) Test UGB : 2023 www.fractionshub.com email:admin@fractionshub.com

Note. In this question-paper, \mathbb{R} denotes the set of real numb

1. Determine all integers $n>1$ such that every power of n has an odd number of digits.

2 . Let $a_{0}=\frac{1}{2}$ and a_{n} be defined inductively by

$$
a_{n}=\sqrt{\frac{1+a_{n-1}}{2}}, n \geq 1 .
$$

(a) Show that for $n=0,1,2, \ldots$.

$$
a_{n}=\cos \theta_{n} \text { for some } 0<\theta_{n}<\frac{\pi}{2}
$$

and determine θ_{n}.
(b) Using (a) or otherwise, calculate

$$
\lim _{n \rightarrow \infty} 4^{n}\left(1-a_{n}\right)
$$

3. In a triangle $A B C$, consider points D and E on $A C$ and $A B$. respectively, and assume that they do not coincide with any of the vertices A, B, C. If the segments $B D$ and $C E$ intersect at F, consider the areas w, x, y, z of the quadrilateral $A E F D$ and the triangles $B E F, B F C, C D F$, respectively.
(a) Prove that $y^{2}>x z$.
(b) Determine w in terms of x, y, z.

4. Let $n_{1}, n_{2}, n_{3}, \cdots, n_{51}$, be distinct natural numbers each of which has exactly 2023 positive integer factors. For instance, 2^{2022} has exactly 2023 positive integer factors $1,2,2^{2}, \cdots, 2^{2021}, 2^{2022}$. Assume that no prime larger than 11 divides any of the n_{i} 's. Show that there must be some perfect cube among the n_{i} 's. You may use the fact that $2023=7 \times 17 \times 17$
5. There is a rectangular plot of size $1 \times n$. This has to be covered by three types of tiles - red, blue and black. The red tiles are of size 1×1, the blue tiles are of size 1×1 and the black tiles are of size 1×2. Let t_{n} denote the number of ways this can be done. For example, clearly $t_{1}=2$ because we can have either a red or a blue tile. Also, $t_{2}=5$ since we could have tiled the plot as: two red tiles, two blue tiles, a red tile on the left and a blue tile on the right, a blue tile on the left and a red tile on the right, or a single black tile.
(a) Prove that $t_{2 n+1}=t_{n}\left(t_{n-1}+t_{n+1}\right)$ for all $n>1$.
(b) Prove that $t_{n}=\sum_{d \geq 0}\binom{n-d}{d} 2^{n-2 d}$ for all $n>0$. Here,

$$
\binom{m}{r}= \begin{cases}\frac{m!}{r!(m-r)!}, & \text { if } 0 \leq r \leq m \\ 0, & \text { otherwise }\end{cases}
$$

for integers m, r.
6. Let $\left\{u_{n}\right\}_{n \geq 1}$ be a sequence of real numbers defined as $u_{1}=1$ and

$$
u_{n+1}=u_{n}+\frac{1}{u_{n}} \text { for all } n \geq 1
$$

Prove that $u_{n} \leq \frac{3 \sqrt{n}}{2}$ for all n.
7. (a) Let $n \geq 1$ be an integer. Prove that $X^{n}+Y^{n}+Z^{n}$ can be written as a polynomial with integer coefficients in the variables $\alpha=X+Y+Z, \beta=X Y+Y Z+Z X$ and $\gamma=X Y Z$.
(b) Let $G_{n}=x^{n} \sin (n A)+y^{n} \sin (n B)+z^{n} \sin (n C)$. where x, y, z, A, B, C are real numbers such that $A+B+C$ is an integral multiple of π. Using (a) or otherwise, show that if $G_{1}=G_{2}=0$, then $G_{\mathrm{n}}=0$ for all positive integers n.
8. Let $f:[0,1] \rightarrow R$ be a continuous function which is differentiable on $(0,1)$. Prove that either f is a linear function $f(x)=a x+b$ or there exists $t \in(0,1)$ such that $|f(1)-f(0)|<\left|f^{\prime}(t)\right|$.

