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B. Stat (Hons.) & B. Math. (Hons.) Admission Test: 2020
www.fractionshub.com

Contact: +91-8247590347
Multiple-Choice Test

Time: 2 hours

1. For the function on the real line R given by f(x) = |x|+ |x+ 1|+ ex, which of the following is
true ?

(a) It is differentiable everywhere.

(b) It is differentiable everywhere expect at x = 0 and x = −1.

(c) It is differentiable everywhere expect at x = 1/2.

(d) It is differentiable everywhere except at x = −1/2.

2. If f, g are real-valued differentiable functions on the real line R such that f(g(x)) = x and
f ′(x) = 1 + (f(x))2, then g′(x) equals

(a) 1

1+x2 ;

(b) 1 + x2;

(c) 1

1+x4 ;

(d) 1 + x4.

3. The number of subsets of {1, 2, 3, . . . , 10} having an odd number of elements is

(a) 1024;

(b) 512;

(c) 256;

(d) 50.

4. A group of 64 players in a chess tournament needs to be divided into 32 groups of 2 players
each. In how many ways can this be done ?

(a) 64!

32!232
;

(b)
(

64

2

)(

62

2

)

. . .
(

4

2

)(

2

2

)

(c) 64!

32!32!

(d) 64!

264
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5. The number of real solution of ex = sin(x) is

(a) 0;

(b) 1;

(c) 2;

(d) infinity.

6. What is the limit of
∑

n

k=1

e−k/n

n
as n tends to ∞?

(a) The limit dose not exist;

(b) ∞;

(c) 1− e−1;

(d) e−0.5.

7. Let f, g be differentiable functions on the real line R with f(0) > g(0). Assume that the set
M = {t ∈ R|f(t) = g(t)} is non-empty and that f ′(t) ≥ g′(t) for all t ∈ M . Then which of the
following is necessarily true ?

(a) If t ∈ M , then t < 0.

(b) For any t ∈ M, f ′(t) > g′(t).

(c) For any t 6∈ M, f(t) > g(t).

(d) none of the above.

8. Consider the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5 . . . obtained by writing one 1, two 2′s,
three 3′s and so on. What is the 2020th term in the sequence ?

(a) 62;

(b) 63;

(c) 64;

(d) 65.

9. Let A = {x1, x2, . . . , x50} and B = {y1, y2, . . . , y20} be two sets of real numbers. What is the
total number of function f : A → B such that f is onto and f(x1) ≤ f(x2) ≤ · · · ≤ f(x50)?

(a)
(

49

19

)

;

(b)
(

49

20

)

;
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(c)
(

50

19

)

;

(d)
(

50

20

)

.

10. The number of complex roots of the polynomial z5 − z4 − 1 which have modulus 1 is

(a) 0;

(b) 1;

(c) 2;

(d) more that 2

11. The number of real roots of the polynomial

p(x) = (x2020 + 2020x2 + 2020)(x3 − 2020)(x2 − 2020)

is

(a) 2;

(b) 3;

(c) 2023;

(d) 2025.

12. Which of the following is the sum of an infinite geometric sequence whose terms come from the
set {1, 1

2
, 1
4
, . . . , 1

2n
, . . . }?

(a) 1

5
;

(b) 1

7
;

(c) 1

9
;

(d) 1

11
.

13. The integral part of
∑9999

n=2

1√
n
equals

(a) 196;

(b) 197;

(c) 198;

(d) 199.

14. Let an be the number of subsets of {1, 2, . . . , n} that do not contain any two consecutive
numbers. Then
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(a) an = an−1 + an−2;

(b) an = 2an−1;

(c) an = an−1 − an−2

(d) an = an−1 + 2an−2.

15. There are 128 numbers 1, 2, . . . , 128 which are arranged in a circular pattern in clockwise
order. We start deleting numbers from this set in a clockwise fashion as follows. First delete
the number 2, then skip the next available number (which is 3) and delete 4. Continue in this
manner, that is after deleting a number, skip the next available number clockwise and delete
the number available after that, till only one number remains. What is the last number left ?

(a) 1;

(b) 63;

(c) 127;

(d) None of the above.

16. Let z and w be complex numbers lying on the circles of radii 2 and 3 respectively, with
centre (0, 0). If the angle between the corresponding vectors is 60 degrees, then the value of
|z + w|/|z − w| is:

(a)
√
19√
7
;

(b)
√
7√
19
;

(c)
√
12√
7
;

(d)
√
7√
12
.

17. Two vertices of a square lie on a circle of radius r and the other two vertices lie on a tangent
to this circle. Then the length of the side of the square is

(a) 3r

2
;

(b) 4r

3
;

(c) 6r

5
;

(d) 8r

5
.

18. For a real number x, let [x] denote the greatest integer less that or equal to x. Then the number
of real solutions of |2x− [x]| = 4 is
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(a) 4;

(b) 3;

(c) 2;

(d) 1.

19. If sin(tan−1(x)) = cot(sin−1(
√

13

17
)) then x is

(a) 4

17
;

(b) 2

3
;

(c)
√

172−132

172+132
;

(d)
√

172−132

17×13

20. If the word PERMUTE is permuted is all possible ways and the different resulting words are
written down in alphabetical order (also known as dictionary order), irrespective of whether
the word has meaning or not then the 720th word would be:

(a) EEMPRTU ;

(b) EUTRPME;

(c) UTRPMEE;

(d) MEETPUR.

21. The points (4, 7,−1), (1, 2,−1), (−1,−2,−1) and (2, 3,−1) in R
3 are the vertices of a

(a) rectangle which is not a square;

(b) rhombus;

(c) parallelogram which is not a rectangle;

(d) trapezium which is not a parallelogram.

22. Let f(x), g(x) be function on the real line R such that both f(x) + g(x) and f(x)g(x) are,
differentiable. Which of the following is FALSE ?

(a) f(x)2 + g(x)2 is necessarily differentiable.

(b) f(x) is differentiable if and only if g(x) is differentiable.

(c) f(x) and g(x) are necessarily continuous.
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(d) If f(x) > g(x) for all x ∈ R, then f(x) is differentiable.

23. Let S be the set consisting of all those real numbers that can be written as p− 2a where p and
a are the perimeter and area of a right-angled triangle having base length 1. Then S is

(a) (2,∞);

(b) (1,∞);

(c) (0,∞);

(d) the real line R.

24. Let S = {1, 2, . . . , n}. For any non-empty subset A of S, let l(A) denote the largest number in
A. If f(n) =

∑

A⊆S
l(A), that is, f(n) is the sum of the numbers l(A) while A ranges over all

nonempty subsets of S, then f(n) is

(a) 2n(n+ 1);

(b) 2n(n+ 1)− 1;

(c) 2n(n− 1);

(d) 2n(n− 1) + 1.

25. If a, b, c are distinct odd natural numbers, then the number of rational roots of the polynomial
ax2 + bx+ c

(a) must be 0.

(b) must be 1;

(c) must be 2;

(d) cannot be determined from the given data.

26. Let A,B,C be finite subsets of the plan such that A ∩B,B ∩C and C ∩A are all empty. Let
S = A ∪ B ∪ C. Assume that no three points of S are collinear and also assume that each of
A,B and C has at least 3 points. Which of the following statements is always true ?

(a) There exists a triangle having a vertex from each of A,B,C that does not contain any
point of S in its interior;

(b) Any triangle having a vertex from each of A,B,C must contain a point of S in its interior;

(c) There exists a triangle, having a vertex from each of A,B,C that contains all the remaining
points of S in its interior;



w
w
w
.f
ra
ct
io
n
sh
u
b
.c
o
m

(d) There exist 2 triangles, both having a vertex from each of A,B,C such that two triangles
do not intersect.

27. Shubhaangi thinks she may be allergic to Bengal gram and takes a test that is known to give
the following result:

• For people who really do have the allergy, the test says ”Yes” 90% of the time.

• For people who do not have the allergy, the test says ”Yes” 15% of the time

If 2% of the population has the allergy and Shubhaangi’s test says ”Yes”, then the chance that
Shubhaangi does really have the allergy are

(a) 1/9;

(b) 6/55;

(c) 1/11;

(d) cannot be determined from the given data

28. For any real number x, let [x] be the greatest integer m such that m ≤ x. Then the number of
points of discontinuity of the function g(x) = [x2 − 2] on the interval (−3, 3) is

(a) 5;

(b) 9;

(c) 13;

(d) 16.

29. The area of the region in the plane R2 given by points (x, y) satisfying |y| ≤ 1 and x2 + y2 ≤ 2
is

(a) π + 1;

(b) 2π − 2;

(c) π + 2;

(d) 2π − 1.

30. Let n be a positive integer and t ∈ (0, 1). Then
∑

n

r=0
r
(

n

r

)

tr(1− t)n−r equals

(a) nt;

(b) (n− 1)(1− t);

(c) nt+ (n− 1)(1− t);

(d) (n2 − 2n+ 2)t


