B. Stat (Hons.) \& B. Math. (Hons.) Admission Test : 2020 www.fractionshub.com

Contact: $+91-8247590347$
email: admin@fractionshub.com
Short-Answer Type Test
Time: 2 hours

1. Let i be a root of the equation $x^{2}+1=0$ and let ω be a root of the equation $x^{2}+x+1=0$. Construct a polynomial

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are all integers such that $f(i+\omega)=0$.
2. Let a be a fixed real number. Consider the equation

$$
(x+2)^{2}(x+7)^{2}+a=0, x \in \mathbb{R}
$$

where \mathbb{R} is the set of real numbers. For what values of a, will the equation have exactly one double root?
3. Let A and B be variable points on x-axis and y-axis respectively such that the line segment AB is in the first quadrant and of a fixed length $2 d$. Let C be the mid-point of $A B$ and P be a point such that
(a) P and the origin are on the opposite sides of $A B$ and,
(b) $P C$ is a line segment of length d which is perpendicular to $A B$.

Find the locus of P.
4. Let a real-valued sequence $\left\{x_{n}\right\}_{n \geq 1}$ be such that

$$
\lim _{n \rightarrow \infty} n x_{n}=0
$$

Find all possible real values of t such that $\lim _{n \rightarrow \infty} x_{n}(\log n)^{t}=0$.
5. Prove that the largest pentagon (in terms of area) that can be inscribed in a circle of radius 1 is regular (i.e., has equal sides).
6. Prove that the family of curves

$$
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1
$$

satisfies

$$
\frac{d y}{d x}\left(a^{2}-b^{2}\right)=\left(x+y \frac{d y}{d x}\right)\left(x \frac{d y}{d x}-y\right)
$$

7. Consider a right-angled triangle with integer-valued sides $a<b<c$ where a, b, c are pairwise co-prime. Let $d=c-b$. Suppose d divides a.
Then
(a) Prove that $d \leq 2$
(b) Find all such triangles (i.e., all possible triplets a,b,c) with perimeter less than 100.
8. A finite sequence of numbers $\left(a_{1}, \ldots, a_{n}\right)$ is said to be alternating if

$$
\begin{aligned}
& a_{1}>a_{2}, \quad a_{2}<a_{3}, \quad a_{3}>a_{4}, \quad a_{4}<a_{5}, \ldots \\
& \text { or } a_{1}<a_{2}, \quad a_{2}>a_{3}, \quad a_{3}<a_{4}, \quad a_{4}>a_{5}, \ldots
\end{aligned}
$$

How many alternating sequences of length 5 , with distinct numbers $a_{1}, a_{2}, \ldots, a_{5}$ can be formed such that $a_{i} \in\{1,2, \ldots, 20\}$ for $i=1, \ldots, 5$?

