BOOKLET No.
Afternoon

Duration of test : 2 hours

Write your registration number, test code, booklet no., etc. in the appropriate places on your ANSWER BOOKLET.

This test has questions arranged in two groups.

Each group consists of 6 questions.

You need to answer 4 questions FROM EACH GROUP.

Each question carries 10 marks. Total marks $=80$.

ALL ROUGH WORK MUST BE DONE ON THIS BOOKLET AND/OR ON YOUR ANSWER BOOKLET. CALCULATORS ARE NOT ALLOWED.

INSTRUCTIONS FOR CANDIDATES

- Please answer FOUR questions from EACH group.
- Each question carries 10 marks. Total marks : 80.
- $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ and \mathbb{N} denote respectively the set of all real numbers, the set of all complex numbers, the set of all rational numbers and the set of all positive integers.

Group A

1. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of real numbers defined as follows: $x_{1}=1$ and for all $n \in \mathbb{N}, x_{n+1}=\left(3+2 x_{n}\right) /\left(3+x_{n}\right)$.
(a) Show that there exists $\lambda \in(0,1)$ such that for all $n \geq 2$,

$$
\left|x_{n+1}-x_{n}\right| \leq \lambda\left|x_{n}-x_{n-1}\right| .
$$

(b) Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists and find its value.
2. Examine, with justification, whether the following limit exists:

$$
\lim _{N \rightarrow \infty} \int_{N}^{e^{N}} x e^{-x^{2016}} d x
$$

If the limit exists, then find its value.
3. Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes every real value exactly twice? Justify your answer.
4. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a bounded function such that f is Riemann integrable on $[a, 1]$ for every $a \in(0,1)$. Is f Riemann integrable on $[0,1]$? Justify your answer.
[P. T. O.]
5. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a surjective function such that

$$
\|h(\mathbf{x})-h(\mathbf{y})\| \geq 3\|\mathbf{x}-\mathbf{y}\|
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. Here $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^{2}. Show that the image of every open set (in \mathbb{R}^{2}) under the map h is an open set (in \mathbb{R}^{2}).
6. Suppose that $g:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is a continuous function and

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<y<1\right\} .
$$

Define a new function $G:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
G(x, v)=\int_{0}^{x} g(u, v) d u, \quad(x, v) \in[0,1] \times[0,1] .
$$

Now define another function $\psi: D \rightarrow \mathbb{R}$ by

$$
\psi(x, y)=\int_{x}^{y} G(x, v) d v, \quad(x, y) \in D .
$$

Does $\frac{\partial \psi}{\partial y}$ exist at every point in D ? Justify your answer.

Group B

7. Let A be a 2×2 matrix with complex entries. Suppose that $\operatorname{det}(A)=0$ and $\operatorname{trace}(A) \neq 0$. Show the followimg:
(a) $\operatorname{Kernel}(A) \cap \operatorname{Range}(A)=\{\mathbf{0}\}$.
(b) $\mathbb{C}^{2}=\operatorname{span}(\operatorname{Kernel}(A) \cup \operatorname{Range}(A))$.
8. Suppose that B is a nonzero 2×2 matrix with complex entries. Prove that $B^{2}=0$ if and only if the B and the matrix $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ are similar.
9. Let S_{17} be group of all permutations of 17 distinct symbols. How many subgroups of order 17 does S_{17} have? Justify your answer.
10. Suppose that H and K are two subgroups of a group G. Assume that $[G: H]=2$ and K is not a subgroup of H. Show that $H K=G$.
11. For any ring R, let $R[X]$ denote the ring of all polynomials with indeterminate X and coefficients from R. Examine, with justification, whether the following pairs of rings are isomorphic:
(a) $\mathbb{R}[X]$ and $\mathbb{C}[X]$.
(b) $\mathbb{Q}[X] /\left(X^{2}-X\right)$ and $\mathbb{Q} \times \mathbb{Q}$.
12. For any $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, let $\mathbb{Q}(\alpha)$ be the smallest subfield of \mathbb{R} containing $\mathbb{Q} \cup\{\alpha\}$. Find a basis for the vector space $\mathbb{Q}(\sqrt{3}+\sqrt{5})$ over $\mathbb{Q}(\sqrt{15})$.
