M.Math Entrance Exam: PMB: 2020 www.fractionshub.com

email: admin@fractionshub.com

Short-Answer Type Test Time: 2 hours

Notation.

 \mathbb{R} denotes the set of all real numbers.

 $\mathbb C$ denotes the set of all complex numbers.

- 1. (a) Let $\{f_n\}$ be a sequence of continuous real-valued functions on [0,1] converging uniformly on [0,1] to a function f. Suppose for all $n \geq 1$ there exists $x_n \in [0,1]$ such that $f_n(x_n) = 0$. Show that there exists $x \in [0,1]$ such that f(x) = 0.
 - (b) Give an example of a sequence $\{f_n\}$ of continuous real-valued functions on $[0, \infty)$ converging uniformly on $[0, \infty)$ to a function f, such that for each $n \ge 1$ there exists $x_n \in [0, \infty)$ satisfying $f_n(x_n) = 0$, but f satisfies $f(x) \ne 0$ for all $x \in [0, \infty)$.
- 2. Let $f:[0,1]\to\mathbb{R}$ be continuous function. Show that

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{1}{n} f\left(\frac{k}{n}\right) \right) = e^{\int_0^1 f(x)} dx$$

3. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

for all $x \in \mathbb{R}$.

(b) Show that if f further satisfies

$$\frac{1}{2y} \int_{x-y}^{x+y} f(t)dt = f(x)$$

for all $x \in \mathbb{R}, y > 0$, then there exist $a, b \in \mathbb{R}$ such that f(x) = ax + b for all $x \in \mathbb{R}$.

- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable function. Show that if f is bounded and $f''(x) \geq 0$ for all $x \in \mathbb{R}$ then f must be constant.
- 5. Let J be a 2×2 real matrix such that $J^2 = -I$, where I is the identity matrix
 - (a) Show that if $v \in \mathbb{R}^2$ and $v \neq 0$, then the vectors $v, Jv \in \mathbb{R}^2$ are linearly independent

(b) Show that there exists an invertible 2×2 real matrix U such that

$$UJU^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- 6. Suppose V is a 3-dimensional real vector space and $T:V\to V$ is a linear map such that $T^3=0$ and $T^2\neq 0$.
 - (a) Show that there exists a vector $v \in V$ such that the set $\{v, T(v), T^2(v)\}$ is a basis of V.
 - (b) Suppose $S:V\to V$ is another linear map such that $S^3=0$ and $S^2\neq 0$. Show that there exist an invertible linear map $U:V\to V$ such that $S=UTU^{-1}$.
- 7. Let K be a field, and let R be the ring K[x]. Let $I \subset R$ be the ideal generated by (x-1)(x-2). Find all maximal ideals of the ring R/I.
- 8. Let G be a finite group, and let H be a normal subgroup of G, Let P be a sylow p-subgroup of H
 - (a) Show that for all $g \in G$, there exists $h \in H$ such that $gPg^{-1} = hPh^{-1}$.
 - (b) Let $N = \{g \in G \mid gPg^{-1} = P\}$. Let HN be the set $HN = \{hn \mid h \in H, n \in N\}$. Show that G = HN.