ISI M.MATH Admission Test: 2020 www.fractionshub.com
 Contact: +91-8247590347
 Multiple-Choice Test
 Time: 2 hours

Notation.

\mathbb{R} denotes the set of all real numbers.
\mathbb{C} denotes the set of all complex numbers.

1. Let V be a finite dimensional vector space and let W be a proper subspace of V. Let W^{\prime} be another subspace of V such that $V=W \oplus W^{\prime}$, i.e. $V=\operatorname{span}\left(W \cup W^{\prime}\right)$ and $W \cap W^{\prime}=\{0\}$. Let $T: V \rightarrow V$ be an invertible linear map such that $T(W) \subset W$. Which of the following statements is necessarily true?
(a) $T\left(W^{\prime}\right) \subset W^{\prime}$;
(b) $W^{\prime} \subset T\left(W^{\prime}\right)$;
(c) $T\left(W^{\prime}\right) \cap W=\{0\}$;
(d) $W^{\prime} \subset \operatorname{ker}(T)$.
2. Let V be a finite dimensional real vector space, and let $T: V \rightarrow V$ be a linear map such that Range $(T)=\operatorname{ker}(T)$. Which of the following statements in not necessarily true?
(a) $T=0$;
(b) $T^{2}=0$;
(c) 0 is an eigenvalue of T;
(d) All eigenvalues of T are equal to 0 .
3. Consider the vector space \mathbb{R}^{n} equipped with the Euclidean metric d define by

$$
d(x, y)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1} / 2
$$

Let W be a proper subspace of \mathbb{R}^{n}. Which of the following statements is necessarily true ?
(a) W is closed.
(b) W is open.
(c) W is not closed.
(d) W is neither closed nor open.
4. Let A be a 5×5 real matrix. If $A=\left(a_{i j}\right)$, let $A_{i j} j$ denote the cofactor of the entry $a_{i j}$, for $1 \leq i, j \leq 5$. Let A denote the matrix whose (i, j)-th entry is $A_{i j}, 1 \leq i, j \leq 5$. Suppose the rank of A is 3 . What is the rank of A ?
(a) 1 ;
(b) 3 ;
(c) 5 ;
(d) 0 .

5 . For $n \geq 2$, the determinant of the $n \times n$ permutation matrix
(a) $(-1)^{n}$;
(b) $(-1)^{n(n-1) / 2}$;
(c) -1 ;
(d) 1 .
6. Let $M_{2}(\mathbb{R})$ denote the vector space of all 2×2 matrices over the field of real number i.e.

$$
M_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

Let $S \subset M_{2}(\mathbb{R})$ be the subspace defined by

$$
S=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{R}): a+c=0\right\}
$$

Then the dimension of S is
(a) 1 ;
(b) 2 ;
(c) 3 ;
(d) 4 .
7. Let V be a finite dimensional real vector space of dimension $n>1$ and let $W \subset V$ be a subspace of dimension $n-1$. A linear map from V to \mathbb{R} is called a linear functional on V. Which of the following statements is necessarily true?
(a) There does not exist any linear functional on V such that W is the kernel of that linear functional;
(b) W is the kernel of unique linear functional on V;
(c) W is the kernel of a linear functional on V;
(d) There exist a non-zero linear functional on V whose kernel strictly contains W.
8. Let $\langle\cdots\rangle_{n}$ denote the standard inner product on the vector space \mathbb{R}^{n},i.e.

$$
<x, y>_{n}=\sum_{i=1}^{n} x, y_{i}
$$

for vectors $x, y \in \mathbb{R}^{n}$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map such that

$$
<T x, T y>_{m}=<x, y>_{n}
$$

for all $x, y \in \mathbb{R}^{n}$. which of the following statements is necessarily true ?
(a) $n \geq m$.
(b) $n \leq m$.
(c) $n=m$.
(d) The map T is onto
9. Let V be a finite dimensional real inner product space and let $T: V \rightarrow V$ be a linear map such that $<T x T y>=<x, y>$ for all $x, y \rightarrow V$. Suppose $W \subset V$ is a proper subspace of V such that $T(W) \subset W$ Define a subspace W^{\perp} of V by

$$
W^{\perp}:=\{v \in V \mid<v, w>=0 \text { for all } w \in W\}
$$

(a) $T\left(W^{\perp}\right)$ is not contained in W^{\perp}.
(b) $T\left(W^{\perp}\right)$ is contained in W^{\perp}.
(c) $T\left(W^{\perp}\right) \cap W^{\perp}=\{0\}$.
(d) W^{\perp} is contained in $T\left(W^{\perp}\right)$
10. Let R be a ring with unit such that $a^{2}=a$ for all $a \in \mathbb{R}$. Which of the following statements is not neccessarily true?
(a) $a b=-b a$ for all $a, b, \in \mathbb{R}$,
(b) $a=-a$ for all $a \in \mathbb{R}$,
(c) R is commutative,
(d) $R=\{0,1\}$.
11. Let S be a nonempty set, and let $p(S)$ be the power set of S, i.e. $p(S)=\{A|A \subset S|\}$. Define a binary operation \angle on $P(S)$ by $A \angle B:=(A \cup B) \backslash(A \cap B)$ for $A, B \in P(S)$. Which of the following statements is necessarily true?
(a) $(P(S), \triangle)$ is not a group as \triangle is not associative.
(b) $(P(S), \triangle)$ is not a group as there is no identity.
(c) $(P(S), \triangle)$ is an abelian group.
(d) $(P(S), \triangle)$ is a non-abelian group.
12. Let I_{1}, I_{2} be ideals of a commutative ring \mathbb{R}. Define the set

$$
I_{1}+I_{2}:=\left\{a+b \mid a \in I_{1}, b \in I_{2}\right\} .
$$

Which of the following statements in not neccessarily true ?
(a) $I_{1}+I_{2}$ is an ideal of \mathbb{R}.
(b) $I_{1} \subset I_{1}+I_{2}$.
(c) $\left|I_{1}+I_{2}\right|=\left|I_{1}\right|+\left|I_{2}\right|$ if \mathbb{R} is finite.
(d) $\left|I_{1}+I_{2}\right|=\left|I_{1}\right| \cdot\left|I_{2}\right|$ if $I_{1} \cap I_{2}=\{0\}$ and \mathbb{R} is finite.
13. Let I be an ideal of a commutative ring \mathbb{R}. Define the set

$$
\sqrt{I}:=\left\{a \in \mathbb{R} \mid \text { There exists } n \geq 1 \text { such that } a^{n} \in I\right\}
$$

Which of the following statements is neccessarily true?
(a) \sqrt{I} is an ideal.
(b) \sqrt{I} is not an ideal.
(c) $\sqrt{I}=I$.
(d) $\sqrt{I} \subset I$.
14. How many non-isomorphic group are there of order 15 ?
(a) 1 ;
(b) 2 ;
(c) 3 ;
(d) 5 .
15. Suppose G is a group and $a, b \in G$. which of the following statements is neccessarily true ?
(a) There exist a positive integer n such that $a^{n}=b^{n}$;
(b) $(a b)^{-1}=a^{-1} b^{-1}$;
(c) $o(a b)=o(b a)$.
(d) None of the above statements is necessarily true.
16. Let H_{1}, H_{2} be distinct subgroups of a finite abelian group G. Define the subgroup $H_{1} H_{2}$ by $H_{1} H_{2}=h_{1} h_{2} \mid h_{1} \in H_{1}, h_{2} \in H_{2}$. Which of the following statements is neccessarily true?
(a) $|G| \leq\left|H_{1}\right|+\left|H_{2}\right|$;
(b) $\left|G \backslash\left(H_{1} \cap H_{2}\right)\right|=\left|G H_{1}\right| \cdot\left|G \backslash H_{2}\right|$,
(c) $\left|G \backslash H_{1}\right|=\left|G \backslash H_{2}\right| \cdot\left|H_{2} \backslash\left(H_{1} \cup H_{2}\right)\right|$.
(d) $\left|\left(H_{1} H_{2}\right) \backslash H_{1}\right|=\left|H_{2} \backslash\left(H_{1} \cup H_{2}\right)\right|$.
17. Let $P>3$ be a prime number and let s_{p} denote the symmetric group on P symbols. How many p-Sylow subgroup are there in S_{p} ?
(a) 1 ;
(b) p;
(c) 2 ;
(d) $(P-2)$!.
18. Let \mathbb{R} be a commutative ring with unit and let

$$
\mathbb{N}=\left\{a \in \mathbb{R} \mid a^{n}=0 \text { forsomeintegern } \geq 0\right\}
$$

Which of the following statements is necessarily true?
(a) Any prime of \mathbb{R} contains \mathbb{N},
(b) \mathbb{N} is not an ideal,
(c) \mathbb{N} is a prime ideal,
(d) $\mathbb{N}=\{0\}$.
19. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable, and suppose $\lim _{x \rightarrow \infty} f^{\prime \prime}(x)=1$. Which of the following statements is necessarily true?
(a) $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{2}}=1$,
(b) $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{2}}$ does not exist,
(c) $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{2}}=2$,
(d) $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{2}}=1 \backslash 2$.
20. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be define by $f_{n}(x)=(\cos (\pi x))^{2 n}$. Which of the following statements is true ?
(a) The sequence $\left\{f_{n}\right\}$ converges uniformly on 0,1 ,
(b) The sequence $\left\{f_{n}\right\}$ converges pointwise on $[0,1]$ to a function f such that f has exactly one point of discontinuity,
(c) The sequence $\left\{f_{n}\right\}$ converges pointwise on $[0,1]$ to a function f such that f has exactly two points of discontinuity, sequence $\left\{f_{n}\right\}$ does not converge pointwise on $[0,1]$.
21. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function such that

$$
\int_{-1}^{1} f(x) x^{2 n} d x=0
$$

for all $n \geq 0$. Which of the following statements is necessarily false ?
(a) $f_{-1}^{1} f(x)^{2} d x=f_{-1}^{1} f(-x)^{2} d x$.
(b) $\left(\sup _{x \in|-1,1|} f(x)\right)+\left(\inf _{x \in|-1,1|} f(x)\right)=0$.
(c) $f(0) \neq 0$.
(d) $f(1 \backslash 2) f(-1 \backslash 2) \leq 0$.
22. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x+1)=f(x)+1$ for all $x \in \mathbb{R}$. Which of the following statements is necessarily false?
(a) $\lim _{x+\infty} \frac{f(x)}{x^{1+e}}=0$ for all $\in>0$,
(b) $\lim _{x+\infty} \frac{f(x)}{x}$ does not exist,
(c) $\lim _{x+\infty} \frac{f(x)}{x}=1$,
(d) $\lim _{x+\infty} \frac{f(x)}{x^{1+e}}=+\infty$ for all $\in>0$.
23. Let $\{0,1\}^{\mathbb{N}}$ denote the set of all sequence $\left\{x_{n}\right\}$ such that $x_{n} \in\{0,1\}$ for all $n \geq$. Define a map $f:\{0,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ by

$$
f\left(\left\{x_{n}\right\}\right):=\sum_{n=1}^{\infty} \frac{x_{n}}{2^{n}}
$$

Which of the following statements is true ?
(a) The map f is one-to-one and onto from $\{0,1\}^{\mathbb{N}}$ to $[0,1]$.
(b) The map f is one-to-one and onto from $\{0,1\}^{\mathbb{N}}$ to $[0,1)$.
(c) The map f is onto from $\{0,1\}^{\mathbb{N}} t o[0,1]$ and $\left|f^{-1}(1 \backslash 2)\right|=2$.

The map f is onto from $\{0,1\}^{\mathbb{N}}$ to $[0,1]$ and $\left|f^{-1}(1)\right|=2$.
24. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a monotone increasing functions, and define $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=f(x+n), x \in[0, \infty)
$$

for all $n \geq 1$. Suppose that for some $x_{0} \in[0, \infty)$, the limit $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$, exists. Which of the following statements is necessarily false ?
(a) The sequence $\left\{f_{n}\right\}$ converges pointwise on $[0, \infty)$.
(b) The sequence $\left\{f_{n}\right\}$ converges uniformly on $[0, \infty)$.
(c) The limit $\lim _{x \rightarrow \infty} f(x)$ exists.
(d) The function f is unbounded on $[0, \infty)$.
25. Let X, Y be set and let $f: X \rightarrow Y$ be a function. Let $\left\{S_{i}\right\}_{i \in I}$ be a family of subsets of X,i.e. $S_{i} \subset X$ for all $i \in I$, Where I is an index set. Which of the following statements is not necessarily true ?
(a) $F\left(\cup_{i} \in I S_{i}\right) \subset \cup_{i \in I} f\left(S_{i}\right)$.
(b) $F\left(\cup_{i} \in I S_{i}\right) \supset \cap_{i \in I} f\left(S_{i}\right)$.
(c) $F\left(\cap_{i} \in I S_{i}\right) \subset \cap_{i \in I} f\left(S_{i}\right)$.
(d) $F\left(\cup_{i} \in I S_{i}\right) \supset \cup_{i \in I} f\left(S_{i}\right)$.
26. Let S be the set of all those nonnegative real numbers α with the following property: if $\left\{x_{n}\right\}$ is a sequence of nonnegative real number such that $\sum_{n=1}^{i n f t y} x_{n}<+\infty$, then we also have $\sum_{n=1}^{\infty} \frac{\sqrt{x_{n}}}{n^{\alpha}}<+\infty$. Which of the following statements is true ?
(a) $S=\emptyset$.
(b) $S \supset(1 / 4), \infty$.
(c) $S \supset(1 / 2, \infty)$.
(d) $S \subset(3 / 4, \infty)$.
27. Let X be a finite set. Let $P(X)$ be the power set of X, i.e. the set whose elements are all subset of X. Which of the following defines a metric on the power set $P(X)$?
(a) $d(V, W)=|(V \cup W) \backslash(V \cap W)|$.
(b) $d(V, W)=|V \cap W|$.
(c) $d(V, W)=|V \backslash W|$.
(d) $d(V, W)=|V \cup W|$.
28. The tangent line to the curve $2_{x}^{6}+y^{4}=9_{x y}$ at the point $(1,2)$ has slope
(a) $3 / 23$,
(b) 6/23,
(c) $9 / 23$,
(d) $4 / 7$.
29. Consider the following statements:
(a) If $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ are convergent, then $\sum_{n} a_{n} b_{n}$ is convergent.
(b) If $\sum_{n} a_{n}$ is convergent and $\sum_{n} b_{n}$ is absolutely convergent, then $\sum_{n} a_{n} b_{n}$ is absolutely convergent.
(c) If $a_{n} \geq 0$ for all $n, \sum_{n} a_{n}$ is convergent, and $\left\{b_{n}\right\}$ is bounded sequence, then $\sum_{n} a_{n} b_{n}$ is absolutely convergent, then $\sum_{n} a_{n} b_{n}$ is absolutely convergent. Which of the following statements is true?
(a) All of the statements are true,
(b) Statement is true but statement is false,
(c) Only statements and are true,
(d) Only statements and are true.
30. Consider the metric space $\left(\mathbb{N}=\mathbb{N} \cup\{\infty\}\right.$, d), Where the metric d is define by $d(m, n)=\left|\frac{1}{m}-\frac{1}{n}\right|$ for $m, n \in \mathbb{N}$, and $d(n, \infty)=1 / n$ for $n \in \mathbb{N}$. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a continuous function between metric space (Where \mathbb{R} is equipped with its usual metric). Which of the following statements is necessarily false ?
(a) The metric space \mathbb{N} is compact,
(b) The function f is unbounded,
(c) The function f is uniformly continuous,
(d) For any $x \in \mathbb{R}$, the set $f^{-1}(\{x\})$ is compact.

