ISI M.MATH Admission Test: 2020 www.fractionshub.com

Contact: +91-8247590347 Multiple-Choice Test

Time: 2 hours

Notation.

 $\mathbb R$ denotes the set of all real numbers.

- $\mathbb C$ denotes the set of all complex numbers.
- 1. Let V be a finite dimensional vector space and let W be a proper subspace of V. Let W' be another subspace of V such that $V = W \oplus W'$, i.e. $V = \text{span} (W \cup W')$ and $W \cap W' = \{0\}$. Let $T : V \to V$ be an invertible linear map such that $T(W) \subset W$. Which of the following statements is necessarily true ?
 - (a) $T(W') \subset W';$
 - (b) $W' \subset T(W');$
 - (c) $T(W') \cap W = \{0\};$
 - (d) $W' \subset \ker(T)$.
- 2. Let V be a finite dimensional real vector space, and let $T: V \to V$ be a linear map such that $\operatorname{Range}(T) = \ker(T)$. Which of the following statements in not necessarily true ?
 - (a) T = 0;
 - (b) $T^2 = 0;$
 - (c) 0 is an eigenvalue of T;
 - (d) All eigenvalues of T are equal to 0.
- 3. Consider the vector space \mathbb{R}^n equipped with the Euclidean metric d define by

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^1 / 2$$

Let W be a proper subspace of \mathbb{R}^n . Which of the following statements is necessarily true?

- (a) W is closed.
- (b) W is open.
- (c) W is not closed.

- (d) W is neither closed nor open.
- 4. Let A be a 5×5 real matrix. If $A = (a_{ij})$, let $A_i j$ denote the cofactor of the entry a_{ij} , for $1 \leq i, j \leq 5$. Let A denote the matrix whose (i, j)-th entry is $A_{ij}, 1 \leq i, j \leq 5$. Suppose the rank of A is 3. What is the rank of A?
 - (a) 1;
 - (b) 3;
 - (c) 5;
 - (d) 0.

5. For $n \geq 2$, the determinant of the $n \times n$ permutation matrix

(a) $(-1)^n$;

(b)
$$(-1)^{n(n-1)/2}$$

- (c) -1;
- (d) 1.
- 6. Let $M_2(\mathbb{R})$ denote the vector space of all 2×2 matrices over the field of real number i.e.

$$M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$$

Let $S \subset M_2(\mathbb{R})$ be the subspace defined by

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : a + c = 0 \right\}$$

Then the dimension of S is

- (a) 1;
- (b) 2;
- (c) 3;
- (d) 4.
- 7. Let V be a finite dimensional real vector space of dimension n > 1 and let $W \subset V$ be a subspace of dimension n-1. A linear map from V to \mathbb{R} is called a linear functional on V. Which of the following statements is necessarily true ?

- (a) There does not exist any linear functional on V such that W is the kernel of that linear functional;
- (b) W is the kernel of unique linear functional on V;
- (c) W is the kernel of a linear functional on V;
- (d) There exist a non-zero linear functional on V whose kernel strictly contains W.
- 8. Let $\langle \cdots \rangle_n$ denote the standard inner product on the vector space \mathbb{R}^n , i.e.

$$\langle x, y \rangle_n = \sum_{i=1}^n x, y_i$$

for vectors $x, y \in \mathbb{R}^n$. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map such that

$$< Tx, Ty >_m = < x, y >_n$$

for all $x, y \in \mathbb{R}^n$, which of the following statements is necessarily true?

- (a) $n \ge m$.
- (b) $n \leq m$.
- (c) n = m.
- (d) The map T is onto
- 9. Let V be a finite dimensional real inner product space and let $T: V \to V$ be a linear map such that $\langle TxTy \rangle = \langle x, y \rangle$ for all $x, y \to V$. Suppose $W \subset V$ is a proper subspace of V such that $T(W) \subset W$ Define a subspace W^{\perp} of V by

$$W^{\perp} := \{ v \in V | < v, w \ge 0 \text{ for all } w \in W \}$$

- (a) $T(W^{\perp})$ is not contained in W^{\perp} .
- (b) $T(W^{\perp})$ is contained in W^{\perp} .
- (c) $T(W^{\perp}) \cap W^{\perp} = \{0\}.$
- (d) W^{\perp} is contained in $T(W^{\perp})$
- 10. Let R be a ring with unit such that $a^2 = a$ for all $a \in \mathbb{R}$. Which of the following statements is not necessarily true ?
 - (a) ab = -ba for all $a, b \in \mathbb{R}$,
 - (b) a = -a for all $a \in \mathbb{R}$,

(c) R is commutative,

(d)
$$R = \{0, 1\}.$$

- 11. Let S be a nonempty set, and let p(S) be the power set of S, i.e. $p(S) = \{A | A \subset S |\}$. Define a binary operation \angle on P(S) by $A \angle B := (A \cup B) \setminus (A \cap B)$ for $A, B \in P(S)$. Which of the following statements is necessarily true ?
 - (a) $(P(S), \Delta)$ is not a group as Δ is not associative.
 - (b) $(P(S), \Delta)$ is not a group as there is no identity.
 - (c) $(P(S), \Delta)$ is an abelian group.
 - (d) $(P(S), \Delta)$ is a non-abelian group.
- 12. Let I_1, I_2 be ideals of a commutative ring \mathbb{R} . Define the set

$$I_1 + I_2 := \{a + b | a \in I_1, b \in I_2\}.$$

Which of the following statements in not neccessarily true ?

- (a) $I_1 + I_2$ is an ideal of \mathbb{R} .
- (b) $I_1 \subset I_1 + I_2$.
- (c) $|I_1 + I_2| = |I_1| + |I_2|$ if \mathbb{R} is finite.
- (d) $|I_1 + I_2| = |I_1| \cdot |I_2|$ if $I_1 \cap I_2 = \{0\}$ and \mathbb{R} is finite.
- 13. Let I be an ideal of a commutative ring \mathbb{R} . Define the set

$$\sqrt{I} := \{a \in \mathbb{R} | \text{ There exists } n \ge 1 \text{ such that } a^n \in I \}$$

Which of the following statements is neccessarily true ?

- (a) \sqrt{I} is an ideal. (b) \sqrt{I} is not an ideal. (c) $\sqrt{I} = I$. (d) $\sqrt{I} \subset I$.
- 14. How many non-isomorphic group are there of order 15?
 - (a) 1;
 - (b) 2;

- (c) 3;
- (d) 5.
- 15. Suppose G is a group and $a, b \in G$. which of the following statements is necessarily true?
 - (a) There exist a positive integer n such that $a^n = b^n$;
 - (b) $(ab)^{-1} = a^{-1}b^{-1};$
 - (c) o(ab) = o(ba).
 - (d) None of the above statements is necessarily true.
- 16. Let H_1, H_2 be distinct subgroups of a finite abelian group G. Define the subgroup H_1H_2 by $H_1H_2 = h_1h_2|h_1 \in H_1, h_2 \in H_2$. Which of the following statements is necessarily true?
 - (a) $|G| \leq |H_1| + |H_2|;$

 - (b) $|G \setminus (H_1 \cap H_2)| = |GH_1| \cdot |G \setminus H_2|,$ (c) $|G \setminus H_1| = |G \setminus H_2| \cdot |H_2 \setminus (H_1 \cup H_2)|.$
 - (d) $|(H_1H_2) \setminus H_1| = |H_2 \setminus (H_1 \cup H_2)|.$
- 17. Let P > 3 be a prime number and let s_p denote the symmetric group on P symbols. How many p-Sylow subgroup are there in S_p ?
 - (a) 1;
 - (b) *p*;
 - (c) 2;
 - (d) (P-2)!
- 18. Let \mathbb{R} be a commutative ring with unit and let

 $\mathbb{N} = \{ a \in \mathbb{R} | a^n = 0 for some integern \ge 0 \}.$

Which of the following statements is necessarily true?

- (a) Any prime of \mathbb{R} contains \mathbb{N} ,
- (b) \mathbb{N} is not an ideal,
- (c) \mathbb{N} is a prime ideal,

(d)
$$\mathbb{N} = \{0\}.$$

- 19. Let $f : \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable, and suppose $\lim_{x\to\infty} f''(x) = 1$. Which of the following statements is necessarily true ?
 - (a) $\lim_{x \to \infty} \frac{f(x)}{x^2} = 1$,
 - (b) $\lim_{x\to\infty} \frac{f(x)}{x^2}$ does not exist,
 - (c) $\lim_{x \to \infty} \frac{f(x)}{x^2} = 2$,
 - (d) $\lim_{x\to\infty} \frac{f(x)}{x^2} = 1 \setminus 2.$
- 20. Let $f_n : [0,1] \to \mathbb{R}$ be define by $f_n(x) = (\cos(\pi x))^{2n}$. Which of the following statements is true ?
 - (a) The sequence $\{f_n\}$ converges uniformly on 0, 1,
 - (b) The sequence $\{f_n\}$ converges pointwise on [0,1] to a function f such that f has exactly one point of discontinuity,
 - (c) The sequence $\{f_n\}$ converges pointwise on [0, 1] to a function f such that f has exactly two points of discontinuity, sequence $\{f_n\}$ does not converge pointwise on [0, 1].
- 21. Let $f: [-1,1] \to \mathbb{R}$ be a continuous function such that

$$\int_{-1}^{1} f(x) x^{2n} dx = 0$$

for all $n \ge 0$. Which of the following statements is necessarily false ?

- (a) $f_{-1}^{1} f(x)^{2} dx = f_{-1}^{1} f(-x)^{2} dx.$ (b) $\left(\sup_{x \in [-1,1]} f(x) \right) + \left(\inf_{x \in [-1,1]} f(x) \right) = 0.$ (c) $f(0) \neq 0.$
- (d) $f(1 \setminus 2)f(-1 \setminus 2) \le 0.$
- 22. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x+1) = f(x) + 1 for all $x \in \mathbb{R}$. Which of the following statements is necessarily false ?
 - (a) $\lim_{x\to\infty} \frac{f(x)}{x^{1+e}} = 0$ for all $\in > 0$,
 - (b) $\lim_{x \to \infty} \frac{f(x)}{x}$ does not exist,
 - (c) $\lim_{x \to \infty} \frac{f(x)}{x} = 1$,

(d) $\lim_{x \to \infty} \frac{f(x)}{x^{1+e}} = +\infty$ for all $\in > 0$.

23. Let $\{0,1\}^{\mathbb{N}}$ denote the set of all sequence $\{x_n\}$ such that $x_n \in \{0,1\}$ for all $n \geq .$ Define a map $f: \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ by

$$f(\{x_n\}) := \sum_{n=1}^{\infty} \frac{x_n}{2^n}$$

Which of the following statements is true ?

- (a) The map f is one-to-one and onto from $\{0,1\}^{\mathbb{N}}$ to [0,1].
- (b) The map f is one-to-one and onto from $\{0,1\}^{\mathbb{N}}$ to [0,1).
- (c) The map f is onto from $\{0,1\}^{\mathbb{N}} to[0,1]$ and $|f^{-1}(1\setminus 2)| = 2$. The map f is onto from $\{0,1\}^{\mathbb{N}}$ to [0,1] and $|f^{-1}(1)| = 2$.
- 24. Let $f:[0,\infty)\to\mathbb{R}$ be a monotone increasing functions, and define $f_n:[0,\infty)\to\mathbb{R}$ by

$$f_n(x) = f(x+n), x \in [0,\infty)$$

for all $n \ge 1$. Suppose that for some $x_0 \in [0, \infty)$, the limit $\lim_{n\to\infty} f_n(x_0)$, exists. Which of the following statements is necessarily false ?

- (a) The sequence $\{f_n\}$ converges pointwise on $[0, \infty)$.
- (b) The sequence $\{f_n\}$ converges uniformly on $[0, \infty)$.
- (c) The limit $\lim_{x\to\infty} f(x)$ exists.
- (d) The function f is unbounded on $[0, \infty)$.
- 25. Let X, Y be set and let $f : X \to Y$ be a function. Let $\{S_i\}_{i \in I}$ be a family of subsets of X, i.e. $S_i \subset X$ for all $i \in I$, Where I is an index set. Which of the following statements is not necessarily true ?
 - (a) $F(\cup_i \in IS_i) \subset \cup_{i \in I} f(S_i)$.
 - (b) $F(\bigcup_i \in IS_i) \supset \bigcap_{i \in I} f(S_i).$
 - (c) $F(\cap_i \in IS_i) \subset \cap_{i \in I} f(S_i).$
 - (d) $F(\bigcup_i \in IS_i) \supset \bigcup_{i \in I} f(S_i).$
- 26. Let S be the set of all those nonnegative real numbers α with the following property: if $\{x_n\}$ is a sequence of nonnegative real number such that $\sum_{n=1}^{infty} x_n < +\infty$, then we also have $\sum_{n=1}^{\infty} \frac{\sqrt{x_n}}{n^{\alpha}} < +\infty$. Which of the following statements is true ?

- (a) $S = \emptyset$. (b) $S \supset (1/4), \infty$. (c) $S \supset (1/2, \infty)$.
- (d) $S \subset (3/4, \infty)$.
- 27. Let X be a finite set. Let P(X) be the power set of X, i.e. the set whose elements are all subset of X. Which of the following defines a metric on the power set P(X)?
 - (a) $d(V, W) = |(V \cup W) \setminus (V \cap W)|.$
 - (b) $d(V, W) = |V \cap W|$.
 - (c) $d(V, W) = |V \setminus W|$.
 - (d) $d(V, W) = |V \cup W|.$

28. The tangent line to the curve $2_x^6 + y^4 = 9_{xy}$ at the point (1,2) has slope

- (a) 3/23,
- (b) 6/23,
- (c) 9/23,
- (d) 4/7.

29. Consider the following statements:

- (a) If $\sum_{n} a_n$ and $\sum_{n} b_n$ are convergent, then $\sum_{n} a_n b_n$ is convergent.
- (b) If $\sum_{n} a_n$ is convergent and $\sum_{n} b_n$ is absolutely convergent, then $\sum_{n} a_n b_n$ is absolutely convergent.
- (c) If $a_n \ge 0$ for all n, $\sum_n a_n$ is convergent, and $\{b_n\}$ is bounded sequence, then $\sum_n a_n b_n$ is absolutely convergent, then $\sum_n a_n b_n$ is absolutely convergent. Which of the following statements is true ?
- (a) All of the statements are true,
- (b) Statement is true but statement is false,
- (c) Only statements and are true,
- (d) Only statements and are true.

- 30. Consider the metric space $(\mathbb{N} = \mathbb{N} \cup \{\infty\}, d)$, Where the metric *d* is define by $d(m, n) = |\frac{1}{m} \frac{1}{n}|$ for $m, n \in \mathbb{N}$, and $d(n, \infty) = 1/n$ for $n \in \mathbb{N}$. Let $f : \mathbb{N} \to \mathbb{R}$ be a continuous function between metric space (Where \mathbb{R} is equipped with its usual metric). Which of the following statements is necessarily false ?
 - (a) The metric space \mathbb{N} is compact,
 - (b) The function f is unbounded,
 - (c) The function f is uniformly continuous,
 - (d) For any $x \in \mathbb{R}$, the set $f^{-1}(\{x\})$ is compact.