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Notation.
R denotes the set of all real numbers.
C denotes the set of all complex numbers.

1. Let V be a finite dimensional vector space and let W be a proper subspace of V . Let W ′ be
another subspace of V such that V = W ⊕W ′, i.e. V = span (W ∪W ′) and W ∩W ′ = {0}.
Let T : V → V be an invertible linear map such that T (W ) ⊂ W . Which of the following
statements is necessarily true ?

(a) T (W ′) ⊂ W ′;

(b) W ′ ⊂ T (W ′);

(c) T (W ′) ∩W = {0};
(d) W ′ ⊂ ker(T ).

2. Let V be a finite dimensional real vector space, and let T : V → V be a linear map such that
Range(T ) = ker(T ). Which of the following statements in not necessarily true ?

(a) T = 0;

(b) T 2 = 0;

(c) 0 is an eigenvalue of T ;

(d) All eigenvalues of T are equal to 0.

3. Consider the vector space Rn equipped with the Euclidean metric d define by

d(x, y) =

( n∑
i=1

(xi − yi)2
)1

/2

Let W be a proper subspace of Rn. Which of the following statements is necessarily true ?

(a) W is closed.

(b) W is open.

(c) W is not closed.
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(d) W is neither closed nor open.

4. Let A be a 5 × 5 real matrix. If A = (aij), let Aij denote the cofactor of the entry aij, for
1 ≤ i, j ≤ 5. Let A denote the matrix whose (i, j)-th entry is Aij, 1 ≤ i, j ≤ 5. Suppose the
rank of A is 3. What is the rank of A?

(a) 1;

(b) 3;

(c) 5;

(d) 0.

5. For n ≥ 2, the determinant of the n× n permutation matrix

(a) (−1)n;

(b) (−1)n(n−1)/2;

(c) −1;

(d) 1.

6. Let M2(R) denote the vector space of all 2× 2 matrices over the field of real number i.e.

M2(R) =

{(
a b

c d

)
: a, b, c, d ∈ R

}
Let S ⊂M2(R) be the subspace defined by

S =

{(
a b

c d

)
∈M2(R) : a+ c = 0

}
.

Then the dimension of S is

(a) 1;

(b) 2;

(c) 3;

(d) 4.

7. Let V be a finite dimensional real vector space of dimension n > 1 and let W ⊂ V be a subspace
of dimension n− 1. A linear map from V to R is called a linear functional on V . Which of the
following statements is necessarily true ?
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(a) There does not exist any linear functional on V such that W is the kernel of that linear
functional;

(b) W is the kernel of unique linear functional on V ;

(c) W is the kernel of a linear functional on V ;

(d) There exist a non-zero linear functional on V whose kernel strictly contains W .

8. Let < · · · >n denote the standard inner product on the vector space Rn,i.e.

< x, y >n=
n∑

i=1

x, yi

for vectors x, y ∈ Rn. Let T : Rn → Rm be a linear map such that

< Tx, Ty >m=< x, y >n

for all x, y ∈ Rn. which of the following statements is necessarily true ?

(a) n ≥ m.

(b) n ≤ m.

(c) n = m.

(d) The map T is onto

9. Let V be a finite dimensional real inner product space and let T : V → V be a linear map such
that < TxTy >=< x, y > for all x, y → V . Suppose W ⊂ V is a proper subspace of V such
that T (W ) ⊂ W Define a subspace W⊥ of V by

W⊥ := {v ∈ V | < v,w >= 0 for all w ∈ W}

(a) T (W⊥) is not contained in W⊥.

(b) T (W⊥) is contained in W⊥.

(c) T (W⊥) ∩W⊥ = {0}.
(d) W⊥ is contained in T (W⊥)

10. Let R be a ring with unit such that a2 = a for all a ∈ R. Which of the following statements is
not neccessarily true ?

(a) ab = −ba for all a, b,∈ R,

(b) a = −a for all a ∈ R,
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(c) R is commutative,

(d) R = {0, 1}.

11. Let S be a nonempty set, and let p(S) be the power set of S, i.e. p(S) = {A|A ⊂ S|}. Define
a binary operation ∠ on P (S) by A∠B := (A ∪ B) \ (A ∩ B) for A,B ∈ P (S). Which of the
following statements is necessarily true ?

(a) (P (S),4) is not a group as 4 is not associative.

(b) (P (S),4) is not a group as there is no identity.

(c) (P (S),4) is an abelian group.

(d) (P (S),4) is a non-abelian group.

12. Let I1, I2 be ideals of a commutative ring R. Define the set

I1 + I2 := {a+ b|a ∈ I1, b ∈ I2}.

Which of the following statements in not neccessarily true ?

(a) I1 + I2 is an ideal of R.

(b) I1 ⊂ I1 + I2.

(c) |I1 + I2| = |I1|+ |I2| if R is finite.

(d) |I1 + I2| = |I1| · |I2| if I1 ∩ I2 = {0} and R is finite.

13. Let I be an ideal of a commutative ring R. Define the set

√
I := {a ∈ R| There exists n ≥ 1 such that an ∈ I}.

Which of the following statements is neccessarily true ?

(a)
√
I is an ideal.

(b)
√
I is not an ideal.

(c)
√
I = I.

(d)
√
I ⊂ I.

14. How many non-isomorphic group are there of order 15?

(a) 1;

(b) 2;
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(c) 3;

(d) 5.

15. Suppose G is a group and a, b ∈ G. which of the following statements is neccessarily true ?

(a) There exist a positive integer n such that an = bn;

(b) (ab)−1 = a−1b−1;

(c) o(ab) = o(ba).

(d) None of the above statements is necessarily true.

16. Let H1, H2 be distinct subgroups of a finite abelian group G. Define the subgroup H1H2 by
H1H2 = h1h2|h1 ∈ H1, h2 ∈ H2. Which of the following statements is neccessarily true ?

(a) |G| ≤ |H1|+ |H2|;
(b) |G \ (H1 ∩H2)| = |GH1| · |G \H2|,
(c) |G \H1| = |G \H2| · |H2 \ (H1 ∪H2)|.
(d) |(H1H2) \H1| = |H2 \ (H1 ∪H2)|.

17. Let P > 3 be a prime number and let sp denote the symmetric group on P symbols. How
many p-Sylow subgroup are there in Sp?

(a) 1;

(b) p;

(c) 2;

(d) (P − 2)!.

18. Let R be a commutative ring with unit and let

N = {a ∈ R|an = 0forsomeintegern ≥ 0}.

Which of the following statements is necessarily true ?

(a) Any prime of R contains N,

(b) N is not an ideal,

(c) N is a prime ideal,

(d) N = {0}.
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19. Let f : R → R be twice continuously differentiable, and suppose limx→∞ f
′′(x) = 1. Which of

the following statements is necessarily true ?

(a) limx→∞
f(x)
x2 = 1,

(b) limx→∞
f(x)
x2 does not exist,

(c) limx→∞
f(x)
x2 = 2,

(d) limx→∞
f(x)
x2 = 1 \ 2.

20. Let fn : [0, 1]→ R be define by fn(x) = (cos(πx))2n. Which of the following statements is true
?

(a) The sequence {fn} converges uniformly on 0, 1,

(b) The sequence {fn} converges pointwise on [0, 1] to a function f such that f has exactly
one point of discontinuity,

(c) The sequence {fn} converges pointwise on [0, 1] to a function f such that f has exactly
two points of discontinuity,

sequence {fn} does not converge pointwise on [0, 1].

21. Let f : [−1, 1]→ R be a continuous function such that∫ 1

−1
f(x)x2ndx = 0

for all n ≥ 0.Which of the following statements is necessarily false ?

(a) f 1
−1f(x)2dx = f 1

−1f(−x)2dx.

(b)

(
supx∈|−1,1| f(x)

)
+

(
infx∈|−1,1| f(x)

)
= 0.

(c) f(0) 6= 0.

(d) f(1 \ 2)f(−1 \ 2) ≤ 0.

22. Let f : R→ R be a continuous function such that f(x+ 1) = f(x) + 1 for all x ∈ R. Which of
the following statements is necessarily false ?

(a) limx+∞
f(x)
x1+e = 0 for all ∈> 0,

(b) limx+∞
f(x)
x

does not exist,

(c) limx+∞
f(x)
x

= 1,
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(d) limx+∞
f(x)
x1+e = +∞ for all ∈> 0.

23. Let {0, 1}N denote the set of all sequence {xn} such that xn ∈ {0, 1} for all n ≥. Define a map
f : {0, 1}N → R by

f({xn}) :=
∞∑
n=1

xn
2n
.

Which of the following statements is true ?

(a) The map f is one-to-one and onto from {0, 1}N to [0, 1].

(b) The map f is one-to-one and onto from {0, 1}N to [0, 1).

(c) The map f is onto from {0, 1}Nto[0, 1] and |f−1(1 \ 2)| = 2.

The map f is onto from {0, 1}N to [0, 1] and |f−1(1)| = 2.

24. Let f : [0,∞)→ R be a monotone increasing functions, and define fn : [0,∞)→ R by

fn(x) = f(x+ n), x ∈ [0,∞)

for all n ≥ 1. Suppose that for some x0 ∈ [0,∞), the limit limn→∞ fn(x0), exists. Which of the
following statements is necessarily false ?

(a) The sequence {fn} converges pointwise on [0,∞).

(b) The sequence {fn} converges uniformly on [0,∞).

(c) The limit limx→∞ f(x) exists.

(d) The function f is unbounded on [0,∞).

25. Let X, Y be set and let f : X → Y be a function. Let {Si}i∈I be a family of subsets of
X,i.e. Si ⊂ X for all i ∈ I, Where I is an index set. Which of the following statements is not
necessarily true ?

(a) F (∪i ∈ ISi) ⊂ ∪i∈If(Si).

(b) F (∪i ∈ ISi) ⊃ ∩i∈If(Si).

(c) F (∩i ∈ ISi) ⊂ ∩i∈If(Si).

(d) F (∪i ∈ ISi) ⊃ ∪i∈If(Si).

26. Let S be the set of all those nonnegative real numbers α with the following property: if
{xn} is a sequence of nonnegative real number such that

∑infty
n=1 xn < +∞, then we also have∑∞

n=1

√
xn
nα

< +∞. Which of the following statements is true ?
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(a) S = ∅.
(b) S ⊃ (1/4),∞.

(c) S ⊃ (1/2,∞).

(d) S ⊂ (3/4,∞).

27. Let X be a finite set. Let P (X) be the power set of X, i.e. the set whose elements are all
subset of X. Which of the following defines a metric on the power set P (X)?

(a) d(V,W ) = |(V ∪W ) \ (V ∩W )|.
(b) d(V,W ) = |V ∩W |.
(c) d(V,W ) = |V \W |.
(d) d(V,W ) = |V ∪W |.

28. The tangent line to the curve 26
x + y4 = 9xy at the point (1, 2) has slope

(a) 3/23,

(b) 6/23,

(c) 9/23,

(d) 4/7.

29. Consider the following statements:

(a) If
∑

n an and
∑

n bn are convergent, then
∑

n anbn is convergent.

(b) If
∑

n an is convergent and
∑

n bn is absolutely convergent, then
∑

n anbn is absolutely
convergent.

(c) If an ≥ 0 for all n,
∑

n an is convergent, and {bn} is bounded sequence, then
∑

n anbn
is absolutely convergent, then

∑
n anbn is absolutely convergent. Which of the following

statements is true ?

(a) All of the statements are true,

(b) Statement is true but statement is false,

(c) Only statements and are true,

(d) Only statements and are true.
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30. Consider the metric space (N = N∪{∞}, d), Where the metric d is define by d(m,n) = | 1
m
− 1

n
|

for m,n ∈ N, and d(n,∞) = 1/n for n ∈ N. Let f : N→ R be a continuous function between
metric space (Where R is equipped with its usual metric). Which of the following statements
is necessarily false ?

(a) The metric space N is compact,

(b) The function f is unbounded,

(c) The function f is uniformly continuous,

(d) For any x ∈ R, the set f−1({x}) is compact.
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