Indian Statistical Institute, ISI MMATH 2021 PMB Solutions & Discussions

ISI MMath PMB 2021 Subjective Questions, solutions and discussions

Note: You must try the problems on your own before looking at the solutions. I have made the solutions so that you don’t have to join any paid program to get the solutions. After you have failed several times in your attempt to solve a question even with the hints provided, then only look at the solution to that problem. If you cannot solve a single question on your own then this exam is not for you. And if you like my work then please do share this among your friends and do comment below.  

Indian Statistical Institute, ISI, M.Math 2021 PMA Objective Questions Solutions and Discussions: Click Here

Question Paper ISI M.Math 2020 PMA Objective Questions Solutions and Discussions: Click Here

To view ISI MMATH 2019 solutions, hints, and discussions: Click Here

To view ISI MMATH 2018 solutions, hints, and discussions: Click Here

To view ISI MMATH 2017 solutions, hints, and discussions: Click Here

To view ISI MMATH 2016 solutions, hints, and discussions: Click Here

To view previous year’s question papers: Click Here

Problem 1.

Let M be a real n \times n matrix with all diagonal entries equal to r and all non-diagonal entries equal to s. Compute the determinant of M.

Topic: Linear Algebra, Difficulty level: Medium

Solution:

Fix s. Let M_n(r) be the n\times n matrix whose diagonal elements are equal to r and non-diagonal elements are equal to s. Denote P_n(r)=\det M_n(r). Then P_n is a polynomial of degree n in r. We observe that P_n(s)=0. The sum of rows of the matrix M_n(r) is equal to

    \[\begin{pmatrix} r+(n-1)s & r+(n-1)s & \ldots & r+(n-1)s\end{pmatrix}.\]

If r=-(n-1)s then this row is zero, P_n(-(n-1)s)=0. Now we compute the derivative of P_n:

    \[P'_n(r)=\frac{d}{dt}\det M_n(r)=\det \begin{pmatrix} \frac{d}{dr}r & \frac{d}{dr}s & \frac{d}{dr}s & \ldots & \frac{d}{dr}s \\ s& r & s & \ldots & s\\ s & s & r & \ldots & s \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ s & s & s & \ldots & r \\ \end{pmatrix}+\]

    \[+\det \begin{pmatrix} r & s & s & \ldots & s \\ \frac{d}{dr}s& \frac{d}{dr}r & \frac{d}{dr}s & \ldots & \frac{d}{dr}s\\ s & s & r & \ldots & s \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ s & s & s & \ldots & r \\ \end{pmatrix}+\ldots +\det \begin{pmatrix} r & s & s & \ldots & s \\ s& r & s & \ldots & s\\ s & s & r & \ldots & s \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \frac{d}{dr}s & \frac{d}{dr}s & \frac{d}{dr}s & \ldots & \frac{d}{dr}r \\ \end{pmatrix}=\]

    \[=\det \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 \\ s& r & s & \ldots & s\\ s & s & r & \ldots & s \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ s & s & s & \ldots & r \\ \end{pmatrix}+\det \begin{pmatrix} r & s & s & \ldots & s \\ 0& 1 & 0 & \ldots & 0\\ s & s & r & \ldots & s \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ s & s & s & \ldots & r \\ \end{pmatrix}+\ldots +\]

    \[+\det \begin{pmatrix} r & s & s & \ldots & s \\ s& r & s & \ldots & s\\ s & s & r & \ldots & s \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & 1 \\ \end{pmatrix}=\]

    \[=n\det M_{n-1}(r)=nP_{n-1}(r).\]

By induction, P^{(k)}_n(r)=\frac{n!}{(n-k)!}P_{n-k}(r), 1\leq k\leq n-1. It follows that r=s is a root of P^{(k)}_n(r). Hence, r=s is a root of order n-1 of P_n(r), and r=-(n-1)s is a root of order 1. Finally,

    \[\det M_n(r)=P_n(r)=(r-s)^{n-1}(r+(n-1)s).\]

Problem 2.

Let F[X] be the polynomial ring over a field F. Prove that the rings F[X] /\left\langle X^{2}\right\rangle and F[X] /\left(X^{2}-1\right) are isomorphic if and only if the characteristic of F is 2 .

Topic: Abstract Algebra, Difficulty Level: Medium

Solution:

Assume that the rings F[X]/\langle X^2\rangle and F[X]/\langle X^2-1\rangle are isomorphic, and let \varphi:F[X]/\langle X^2\rangle\to F[X]/\langle X^2-1\rangle be an isomoprhism. Then

    \[\varphi(X+\langle X^2\rangle)=b_0+b_1 X+\langle X^2-1\rangle.\]

Since \varphi is an isomorphism, necessarily b_0\ne 0 or b_1\ne 0.

It follows that

    \[\langle X^2-1\rangle=0+\langle X^2-1\rangle=\varphi((X+\langle X^2\rangle)^2)=\]

    \[=\varphi(X+\langle X^2\rangle)^2=b^2_0+(b_0b_1+b_0b_1)X+b^2_1 X^2+\langle X^2-1\rangle=\]

    \[=b^2_0+b^2_1+(b_0b_1+b_0b_1)X+\langle X^2-1\rangle.\]

That is,

    \[b^2_0+b^2_1=0, \ (b_0b_1+b_0b_1)=0.\]

Then (b_0-b_1)^2=0, hence b_0=b_1 and b^2_0+b^2_0=0. If b_0=0, then b_1=0 and \varphi can’t be an isomorphism. So, b_0\ne 0 and we find that F is of characteristic 2.

Conversely, assume that F is of characteristic 2. Consider the mapping

    \[\varphi: F[X]/\langle X^2\rangle\to F[X]/\langle X^2-1\rangle, \varphi(a_0+a_1X+\langle X^2\rangle )=a_0+a_1(1+X)+\langle X^2-1\rangle.\]

The mapping \varphi is an isomorphism. Indeed,

    \[\varphi(a_0+a_1X+c_0+c_1X+\langle X^2\rangle )=a_0+c_0+(a_1+c_1)(1+X)+\langle X^2-1\rangle=\]

    \[=\varphi(a_0+a_1X+\langle X^2\rangle )+\varphi(c_0+c_1X+\langle X^2\rangle );\]

    \[\varphi((a_0+a_1X+\langle X^2\rangle)(c_0+c_1X+\langle X^2\rangle ) )=\varphi(a_0c_0+(a_0c_1+a_1c_0)X+\langle X^2\rangle )=\]

    \[=a_0c_0+(a_0c_1+a_1c_0)(1+X)+\langle X^2-1\rangle=(a_0+a_1(1+X)+\langle X^2-1\rangle)(c_0+c_1(1+X)+\langle X^2-1\rangle)=\]

    \[=\varphi(a_0+a_1X+\langle X^2\rangle )\varphi(c_0+c_1X+\langle X^2\rangle ),\]

as

    \[(1+X+\langle X^2-1\rangle)^2=(1+X+X+X^2+\langle X^2-1\rangle)=(1+X+X+1+\langle X^2-1\rangle)=\langle X^2-1\rangle\]

Problem 3.

Let C be a subset of \mathbb{R} endowed with the subspace topology. If every continuous real-valued function on C is bounded, then prove that C is compact.

Topic: Topology, Difficulty Level: Easy

Solution:

The function f:C\to \mathbb{R}, f(x)=x, is continuous. Hence it is bounded on C:

    \[\sup_{x\in C}|x|<\infty.\]

The set C is bounded.

Let x_0\in \overline{C} (i.e. x_0 is in the closure of C). If x_0\not\in C, then the function

    \[g(x)=\frac{1}{|x-x_0|}\]

is continuous on C. For every \epsilon>0 there exists a point x\in C such that |x-x_0|<\epsilon. Then g(x)>\frac{1}{\epsilon}. As \epsilon>0 is arbitrary, this shows that g is unbounded on C. The obtained contradiction proves that C=\overline{C}. C is bounded and closed, hence compact.

Problem 4.

Let A=\left(a_{i j}\right) be a nonzero real n \times n matrix such that a_{i j}=0 for i \geq j. If \sum_{i=0}^{k} c_{i} A^{i}=0 for some c_{i} \in \mathbb{R}, then prove that c_{0}=c_{1}=0. Here A^{i} is the i -th power of A.

Topic: Linear Algebra, Difficulty Level: Medium

Solution:

Let r\in \{1,\ldots,n-1\} be the first number such that a_{i,i+r}\ne 0 for some i (such r exists as A\ne 0 and a_{ij}=0 for j\leq i) Denote A^d=(a^{(d)}_{ij})_{i\leq j}. We check by induction that for all d\geq 1

    \[j\leq i+r+d-2\Rightarrow a^{(d)}_{ij}=0.\]

For d=1 the statement is true by the choice of r. Assume the statement is proved for d. Let j<i+r+d. Then

    \[a^{(d+1)}_{ij}=\sum^n_{l=1} a^{(d)}_{il}a_{lj}=\sum_{l: l\geq i+r+d-1, j\geq l+r}a^{(d)}_{il}a_{lj}\]

the sum is taken over non-empty set of indices when j-r\geq l\geq i+r+d-1, i.e. when j\geq i+2r+d-1\geq i+r+d=i+r+(d+1)-1. The statement is proved.

 

Let i_0 be such that a_{i_0,i_0+r}\ne 0. For all d\geq 2 we have i_0+r\leq i_0+r+d-2, hence a^{(d)}_{i_0,i_0+r}=0. We find that

    \[0=\sum^k_{d=0} c_i a^{(d)}_{i_0,i_0+r}=c_1a_{i_0,i_0+r}, \ c_1=0\]

(a^{(0)}_{i_0,i_0+r}=0 because it is the off-diagonal element of the identity matrix). Also, for all d\geq 1 we have i_0\leq i_0+r+d-2, hence a^{(d)}_{i_0,i_0}=0 and

    \[0=\sum^k_{d=0} c_i a^{(d)}_{i_0,i_0}=c_0.\]

Problem 5.

Let g: \mathbb{R} \rightarrow \mathbb{R} be the function given by

    \[g(x)= \begin{cases}x \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}\]

Prove that g(x) has a local maximum and a local minimum in the interval \left(-\frac{1}{m}, \frac{1}{m}\right) for any positive integer m.

Topic: Real Analysis, Difficulty Level: Medium

Solution:

On each interval (-\frac{\pi}{2}+\pi n, \frac{\pi}{2}+\pi n) the function \tan(t)-t is strictly increasing. Indeed, its derivative is

    \[(\tan t-t)'=\frac{1}{\cos^2 t}-1=\frac{\sin^2 t}{\cos^2 t}.\]

Let n\geq 1. At t=\pi n we have \tan t-t=-\pi n < 0, and \lim_{t\to \frac{\pi}{2}+\pi n}(\tan t- t)=\infty. Then there is a unique t_n\in (\pi n, \frac{\pi}{2}+\pi n) such that

    \[t_n<t< \frac{\pi}{2}+\pi n\Rightarrow \tan t>t,\]

    \[\pi n < t< t_n\Rightarrow \tan t<t.\]

Consider the derivative of the function g(x) for x>0:

    \[g'(x)=\sin\frac{1}{x}-\frac{1}{x}\cos\frac{1}{x}.\]

Let m\geq 1 and take n>\frac{m}{2\pi}. Then (\frac{1}{\frac{\pi}{2}+2\pi n},\frac{1}{2\pi n})\subset (-\frac{1}{m},\frac{1}{m}). For x\in (\frac{1}{\frac{\pi}{2}+2\pi n},\frac{1}{2\pi n}) we have

    \[2\pi n<\frac{1}{x}< \frac{\pi}{2}+2\pi n, \cos\frac{1}{x}>0.\]

Further,

    \[\frac{1}{\frac{\pi}{2}+2\pi n}<x< \frac{1}{t_{2n}}\Rightarrow g'(x)=\cos\frac{1}{x}\left(\tan\frac{1}{x}-\frac{1}{x}\right)>0\]

and

    \[\frac{1}{t_{2n}}<x<\frac{1}{2\pi n}\Rightarrow g'(x)=\cos\frac{1}{x}\left(\tan\frac{1}{x}-\frac{1}{x}\right)<0.\]

Function g(x) attains a local maximum at x=\frac{1}{t_{2n}}.

For x\in (\frac{1}{\frac{\pi}{2}+(2n+1)\pi },\frac{1}{(2n+1)\pi }) we have

    \[(2n+1)\pi <\frac{1}{x}< \frac{\pi}{2}+(2n+1)\pi , \cos\frac{1}{x}<0.\]

Further,

    \[\frac{1}{\frac{\pi}{2}+(2n+1)\pi }<x< \frac{1}{t_{2n+1}}\Rightarrow g'(x)=\cos\frac{1}{x}\left(\tan\frac{1}{x}-\frac{1}{x}\right)<0\]

and

    \[\frac{1}{t_{2n+1}}<x<\frac{1}{(2n+1)\pi }\Rightarrow g'(x)=\cos\frac{1}{x}\left(\tan\frac{1}{x}-\frac{1}{x}\right)>0.\]

Function g(x) attains a local minimum at x=\frac{1}{t_{2n+1}}.

On each interval (-\frac{1}{m},\frac{1}{m}) function g attains a local maximum and a local minimum.

Problem 6.

Fix an integer n \geq 1. Suppose that n is divisible by distinct natural numbers k_{1}, k_{2}, k_{3} such that

    \[\operatorname{gcd}\left(k_{1}, k_{2}\right)=\operatorname{gcd}\left(k_{2}, k_{3}\right)=\operatorname{gcd}\left(k_{3}, k_{1}\right)=1\]

Pick a random natural number j uniformly from the set \{1,2,3, \ldots, n\}. Let A_{d} be the event that j is divisible by d. Prove that the events A_{k_{1}}, A_{k_{2}}, A_{k_{3}} are mutually independent.

Topic: Probability, Difficulty Level: Medium

Solution:

Let l divides n. There are \frac{n}{l} numbers in \{1,2,\ldots,n\} that are divisible by l. So, P(A_{l})=\frac{1}{l}.

Since k_i and k_j are co-prime when i\ne j, a number is divisible by k_ik_j if and only if it is divisible by k_i and by k_j:

    \[A_{k_i}\cap A_{k_j}=A_{k_ik_j}, P(A_{k_i}\cap A_{k_j})=\frac{1}{k_ik_j}=P(A_{k_i})P(A_{k_j}), \ 1\leq i<j\leq 3.\]

Similarly, A_{k_1}\cap A_{k_2}\cap A_{k_3}=A_{k_1k_2k_3} and

    \[P(A_{k_1}\cap A_{k_2}\cap A_{k_3})=\frac{1}{k_1k_2k_3}=P(A_{k_1})P(A_{k_2})P(A_{k_3}).\]

The equality

    \[P(A_{k_{i_1}}\cap \ldots A_{k_{i_m}})=P(A_{k_{i_1}}) \ldots P(A_{k_{i_m}})\]

holds for all m=1,2,3 and all 1\leq i_1<\ldots<i_m\leq 3. Events A_{k_1}, A_{k_2}, A_{k_3} are mutually independent.

Problem 7.

Let f:[0,1] \rightarrow[0, \infty) be a function. Assume that there exists M \geq 0
such that \sum_{i=1}^{k} f\left(x_{i}\right) \leq M for all k \geq 1 and for all x_{1}, \ldots, x_{k} \in[0,1]
Show that the set \{x \mid f(x) \neq 0\} is countable.

Topic: Real Analysis, Difficulty Level: Easy

Solution:

Remark: I assume that x_1,\ldots,x_k in the statement of the problem are distinct. Otherwise, f must be identically zero.

 

Denote A_n=\{x\in [0,1]:f(x)\geq \frac{1}{n}\}. Then \{x:f(x)\ne 0\}=\cup^\infty_{n=1}A_n. We will show that each set A_n is finite. Indeed, if x_1,\ldots,x_k\in A_n are distinct, then

    \[M\geq \sum^k_{i=1}f(x_i)\geq \frac{k}{n}.\]

So, k\leq nM and the set A_n has at most nM elements.

Problem 8.

Let G be a group having exactly three subgroups. Prove that G is cyclic of order p^{2} for some prime p.

Topic: Group Theory, Difficulty Level: Easy

Solution:

G has three subgroups: \{1\}, G and some other subgroup H. The group G has an element g, such that g\ne 1. Consider a cyclic subgroup S_g generated by g. If this subgroup coincides with G, then G is cyclic. Otherwise, S_g=H. There is an element h\not\in S_g. Let S_h be a cyclic subgroup generated by h. Since S_h\ne \{1\} and S_h\ne S_g=H, then S_h=G and G is cyclic. The subgroup H has no proper subgroups, so its order is prime: |H|=p. Correspondingly, |G|=pn for some integer n. By the fundamental theorem of cyclic groups, if k divides n, then G has a subgroup of order k. It follows that the only possible divisor of n is p. |G|=p^2.

Indian Statistical Institute, ISI, M.Math 2021 PMA Objective Questions Solutions and Discussions: Click Here

To view ISI MMATH 2019 solutions, hints, and discussions: Click Here

To view ISI MMATH 2018 solutions, hints, and discussions: Click Here

To view ISI MMATH 2017 solutions, hints, and discussions: Click Here

To view ISI MMATH 2016 solutions, hints, and discussions: Click Here

To view previous year’s question papers: Click Here

Leave a Reply